Senin, 28 Februari 2011

Fisika Modern : Sifat Gelombang Pada Partikel

MAKALAH FISIKA MODERN
Tentang
SIFAT GELOMBANG PADA PARTIKEL

OLEH:
ERMAN
ABDOLLAH
FAKULTAS PENDIDIKAN MATEMAMATIKA DAN ILMU PENGETAHUAN ALAM
IKIP MATARAM
2009

KATA PENGANTAR
Alhamdulillah,kami panjatkan Puji syuku ratas kehadirat Allah SWT dengan rahmat dan hidayahNya, makalah ini dapat terselesaikan tepat pada waktunya walaupun masih banyak terdapat kekurangannya.
Ucapan terimakasih tidak lupa kami khaturkan kepada berbagai pihak yang telah berperan serta guna terselesainya makalah ini,terutama pada pihak dosen yang telah bersedia meluangkan waktunya ,materi,dan tenaganya dalam ,membimbing kami dan juga pada rekan-rekan kami yang telah banyak membantu demi terselesainya makalah ini.
Kami sadar akan berbagai kekurangan dari makalah ini.untuk itu saran dan kritik yang bersifat membangun sangat kami harapkan guna lebih sempurnanya makalah ini.dan juga kami berharap makalah ini dapat bermanfaat bagi pembanca semuanya,khususnya bagi kami sendiri dan dapat dijadikan sebagai bahan acuan untuk kami selanjutnya.




Mataram,oktober 2009

PENYUSUN





DAFTAR ISI
HALAMAN JUDUL....................................................................................i
KATA PENGANTAR.................................................................................ii
DAFTARA ISI.............................................................................................iii
BAB 1 : PENDAHULUAN
BAB II : PEMBAHASAN
• Gelombang partikel
• Hipotesis deBroglie
• Pengamatan deBroglie
• Dualisme partikel gelombang
BAB III : PENUTUP
• Kesimpulan
DAFTAR PUSTAKA


BAB I
PENDAHULUAN
Sistem mekanika yang berkaitan daengan sistem kuantum lazim disebut”mekanika kuantum”.dalam hal ini akan dibahas serangkaian bukti percobaan yang mendukung perilaku gelombang berbagai partikel seperti elektron.Dalam fisika klasik,hukum-hukum yang mengatur kekhasan gelombang dan partikel sama sekali berbeda.gerak peluru memenuhi hukum-hukum yang berlaku bagi partikel,seperti mekanika newton;sedangkan gelombang mengalami interferensi dan difraksi,yang tidak dapat dijelaskan dengan mekanika newton yang berlaku bagi partikel.Energi yang diambil sebuah partikel(atau peluru)terpusat dalam ruang batas partikel; sebaliknya energi gelombang,tersebar diseluruh ruang pada muka-muka gelombangnya yang terus mengembang. Berlawanan dengan perbedaan tegas yang berlaku dalam fisika klasik ini,teori kuantum mensyaratkan bahwa,dalam lingkungan mikroskopik,partikel kerap kali mematuhi pula hukum-hukum yang berlaku pada gelombang! Dengan demikian,kita dipaksa untuk membuang beberapa pengertian klasik tentang perbedaan partikel dan gelombang.Kita telah mengetahui bagaimana elektron,apabila mengalami hamburan compton,berperilaku seperti bola bilyar klasik,sehingga kita cenderung mempercayai bahwa dengan semacam tang yang sangat halus kita akan dapat memungut elektron.Tetapi,jika elektron adalah sebuah gelombang,maka kita sama sekali tidak dapat melakukan hal tersebut.
Dalam upaya memberikan suatu sistem pemahaman masuk akal dan matematis untuk memecahkan dilema-dilema seperti itu,kita akan merujuk kesejumlah aksioma,analogi dan contoh yang tudak ada pasangannya dalam fisika klasik,sehingga mungkin akan membuat kita akan akan ragu tentang landasan dari logika fisika kuantum.sejak mekanika kuantum pertama kali dikemukakan,para fisikawan telah menggeluti dilema yang sama ini,namun jawaban yang memuaskan terhadap penjelasan mengapa ketercampuradukan perilaku gelombang dan partikel yang penuh teka-teki ini harus terjadi,belumlah terpecahkan.hal yang terpenting adalah penerapan berlakunya..Rumusan matematikanya kita menghitung secara terinci sifat berbagai atom serta intiya dengan ketelitian yang sangat luar biasa.
Ciri perkembangan fisika biasanya ditandai dengan periode panjang pekerjaan eksperimen dan teori tidak memuaskan yang kadang-kadang diselingi oleh cetusan berbagai gagasan mendalam yang menyebabkan perubahan mencolok dalam cara kita memandang alam semesta. Seringkali,semakin dalam gagasan yang dicetuskan dan semakin berani orang mengambil langkah awl semakin sederhana pula gagasan itu tampak dalam sudut pandang sejarah, sehingga kita cenderung bersandar kebelakang dan bertanya dalam hati, “mengapa saya tidak memikirkannya?” Teori relativitas einstein merupakan salah satu contohnya dan hipotesis si warga peranciLouis deBroglie adalah contoh lain.

BAB II
PEMBAHASAN
Sifat Dualisme Gelombang Partikel
Pada tahun 1924, Louis de Broglie, seorang ahli fisika dari prancis mengemukakan hipotesis tentang gelombang partikel. Gagasan ini adalah timbal balik daripada gagasan partikel cahaya yang dikemukakan Max Planck. Louis de Broglie meneliti keberadaan gelombang melalui eksperimen difraksi berkas elektron. Dari hasil penelitiannya inilah diusulkan “materi mempunyai sifat gelombang di samping partikel”, yang dikenal dengan prinsip dualitas.
Sifat partikel dan gelombang suatu materi tidak tampak sekaligus, sifat yang tampak jelas tergantung pada perbandingan panjang gelombang de Broglie dengan dimensinya serta dimensi sesuatu yang berinteraksi dengannya. Pertikel yang bergerak memiliki sifat gelombang. Fakta yang mendukung teori ini adalah petir dan kilat. Kilat akan lebih dulu terjadi daripada petir. Kilat menunjukan sifat gelombang berbentuk cahaya, sedangkan petir menunjukan sifat pertikel berbentuk suara.
Gelombang Partikel
Hipotesis tentang gelombang partikel berasal dari gagasan foton Einstein. Kemudian diterapkan Louis de Broglie pada 1922, sebelum Compton membuktikannya, untuk menurunkan Hukum Wien (1896). Ini menyatakan bahwa "bagian tenaga elektromagnet yang paling banyak dipancarkan benda (hitam) panas adalah yang frekuensinya sekitar 100 milyar kali suhu mutlak (273 + suhu Celsius) benda itu". Pekerjaan ini ternyata memberi dampak yang berkesan bagi de Broglie.
Pada musim panas 1923, de Broglie menyatakan, "secara tiba-tiba muncul gagasan untuk memperluas perilaku rangkap (dual) cahaya mencangkup pula alam partikel". Ia kemudian memberanikan diri dengan mengemukakan bahwa "partikel, seperti elektron juga berperilaku sebagai gelombang". Gagasannya ini ia tuangkan dalam tiga makalah ringkas yang diterbitkan pada 1924; salah satunya dalam jurnal vak fisika Perancis, Comptes Rendus.
Penyajiannya secara terinci dan lebih luas kemudian menjadi bahan tesis doktoralnya yang ia pertahankan pada November 1924 di Sorbonne, Paris. Tesis ini berangkat dari dua persamaan yang telah dirumuskan Einstein untuk foton, E=hf dan p=h/. Dalam kedua persamaan ini, perilaku yang "berkaitan" dengan partikel (energi E dan momentum p) muncul di ruas kiri, sedangkan ruas kanan dengan gelombang (frekuensi f dan panjang gelombang , baca: lambda). Besaran h adalah tetapan alam yang ditemukan Planck, tetapan Planck.
Secara tegas, de Broglie mengatakan bahwa hubungan di atas juga berlaku untuk partikel. Ini merupakan maklumat teori yang melahirkan gelombang partikel atau de Broglie. Untuk partikel, seperti elektron, momentum p adalah hasilkali massa (sebanding dengan berat) dan lajunya. Karena itu, panjang gelombang de Broglie berbanding terbalik dengan massa dan laju partikel. Sebagai contoh, elektron dengan laju 100 cm per detik, panjang gelombangnya sekitar 0,7 mm.
Menurut de Broglie, partikel yang bergerak sangat cepat, mempunyai cirri-ciri gelombang. Sifat-sifat gelombang dari partikel dinyatakan dalam persamaan:
λ = h/mv
dimana: λ = panjang gelombang
m = massa partikel
v = kecepatan
h = tetapan Planck
persamaan diatas dikenal dengan nama persamaan de Broglie dimana persamaan ini dapat dipergunakan untuk menghitung besarnya panjang gelombang dari suatu partikel yang bergerak dengan kecepatan v.



Partikel dan sifat gelombang
Berdasarkan ide yang dikemukakan oleh Einstein, sebuah foton dengan energi hv (frekuensi v dan panjang gelombang λ) memiliki momentum linear searah dengan arah pergerakannya dan dengan besarannya p yang dinyatakan sebagai berikut:

Pada tahun 1923, A. H. Compton membenarkan ide ini dengan menggunakan eksperimen hamburan sinar-X dan elektron. Sehingga, perilaku sebuah foton yang memiliki momentum sebesar h/λ dan energi hv dapat diketahui. Pada tahun 1923, de Broglie mempostulasikan bahwa sebuah partikel dapat memiliki panjang gelombang yang berkaitan dengan momentum yang ia miliki melalui persamaan (1.25) di mana momentum dan panjang gelombang adalah saling berhubungan satu dengan yang lainnya dan sebaliknya. Sifat gelombang dari sebuah elektron disebut sebagai gelombang elektron dan secara umum sifat gelombang dari materi disebut sebagai gelombang materi atau gelombang de Broglie. Panjang gelombang λ untuk gelombang materi diberikan oleh persamaan berikut, di mana juga ekivalen dengan persamaan.

Hubungan ini dikenal sebagai hubungan de Broglie

Gambar 1.10 Titik Laue dari kalsium karbonat (diberikan oleh Rigaku Denki).
Contoh 1. 9. Hitung panjang gelombang dari sebuah berkas elektron yang mengalami akselerasi dari 0 V hingga 150 V.
(Jawaban) Energi kinetik, E adalah energi yang diperoleh melalui percepatan yang dihasilkan oleh beda potensial yang diberikan yaitu sebesar 150 V.


Secara umum, terdapat persamaan-persamaan berikut untuk elektron yang memiliki masa m, kecepatan v, momentum p dan energi kinetik E.

Dengan menggunakan hubungan de Broglie λ = h/p, kita akan mendapatkan

(Sebuah rumus yang berguna untuk mendapatkan panjang gelombang λ dari sebuah gelombang elektron dengan energi kinetik Z eV diberikan oleh λ = √150/Z x 10 -10 m ). Bintik yang indah yang ditunjukkan pada Gambar 1.10 diamati oleh M. T. F. Laue pada tahun 1912 ketika gelombang sinar-X dipancarkan melalui sebuah kristal. Ini menunjukkan proses difraksi oleh sinar-X yang memiliki perilaku sebagai gelombang elektromagnetik. Gelombang sinar-X yang dipantulkan oleh susunan yang teratur dari atom-atom yang terpisah dengan jarak d (Gambar 1.11) akan mengalami penguatan jika kondisi berikut dipenuhi

Ini disebut sebagai kondisi Bragg untuk refleksi (Hukum Bragg) dan n disebut sebagai orde refleksi.

Gambar 1.11 Difraksi sinar-X oleh kisi kristal.
Hal yang sama, gelombang elektron telah dikonfirmasi dengan eksperimen bahwa ia menunjukkan fenomena difraksi terhadap susunan atom-atom yang teratur pada kristal. Hal ini ditunjukkan oleh C. J. Davisson dan L. H. Germer pada tahun 1925 dan juga oleh G. P. Thompson pada tahun 1927. Bentuk dari difraksi elektron ditunjukkan pada gambar 1.12. Distribusi spasial yang tidak homogen yang dibentuk oleh interferensi gelombang elektron sangat berhubungan erat dengan pembentukan dan penghancur an ikatan kimia.





Gambar 1.12 Pola difraksi elektron dari polikristalin emas.

HIPOTESIS De BROGLIE
Ciri perkembangan fisika biasanya ditandai dengan periode panjang pekerjaan eksperimen dan teori tidak memuaskan yang kadang-kadang diselingi oleh cetusan berbagai gagasan mendalam yang menyebabkan perubahan mencolok dalam cara kita memandang alam semesta. Seringkali,semakin dalam gagasan yang dicetuskan dan semakin berani orang mengambil langkah awl semakin sederhana pula gagasan itu tampak dalam sudut pandang sejarah, sehingga kita cenderung bersandar kebelakang dan bertanya dalam hati, “mengapa saya tidak memikirkannya?” Teori relativitas einstein merupakan salah satu contohnya dan hipotesis si warga peranciLouis deBroglie adalah contoh lainnya.
 Louis de Broglie mengemukakan hipotesis:
"Cahaya selain memiliki sifat sebagai partikel, juga memiliki sifat sebagai gelombang".
• Berdasarkan keyakinan akan adanya simetri di alam, Louis de Broglie (1924) mengusulkan suatu hipotesis bahwa partikel dan gelombang EM saling berinteraksi
• gelombang EM memiliki beberapa sifat yang mirip partikel
• kumpulan partikel juga menunjukkan perilaku sebagai gelombang EM
• haya dikenal sebagai radiasi gelombang EM dari benda yang dipanaskan
• De Broglie mengusulkan suatu hubungan antara panjang gelombang  dengan momentum partikel p = mv sebagai:
•  = h/p dengan h adalah konstanta Planck = 6.626 x 10-34 J sec.

BEBERAPA PENGAMATAN deBroglie:
• setiap benda akan memancarkan cahaya bila dipanaskan, contoh besi yang dipanaskan
• warna yang terpancar tidak bergantung pada jenis bahan atau warna asalnya, melainkan pada temperaturnya semata
• di samping cahaya tampak, benda tersebut juga memancarkan radiasi infra merah radiasi juga tetap terjadi bila benda yang digunakan berwarna hitam (mis: karbon)
• radiasi baru melemah jika benda didinginkan sampai mendekati temperatur mutlak (0 kelvin)
DUALISME PARTIKEL GELOMBANG
• Partikel dan gelombang sejak lama dikenal sebagai dua kuantitas yang berbeda dan sama sekali tidak berhubungan
• elektron dikenal sebagai partikel bermuatan negatif dan menjadi penghantar listrik dalam logam
• caManfaat dari hubungan de Broglie:
• Hubungan de Broglie, merupakan “jembatan” yang menghubungkan sifat partikel dari gelombang dan sifat gelombang dari partikel
• sifat dominan yang muncul adalah salah satu (tidak pernah keduanya tampil bersamaan) Ini dikenal sebagai “dualisme partikel gelombang
Aplikasi hubungan de Broglie:
• Efek Fotolistrik adalah percobaan yang menampilkan sifat partikel dari gelombang cahaya
• Difraksi elektron adalah percobaan yang menampilkan sifat gelombang dari partikel
Efek Fotolistrik:
• Cahaya biru monokromatik diarahkan pada elektroda negatif
• Arus listrik akan mengalir dan terbaca di pengukur arus



BAB III
PENUTUP
A. KESIMPULAN
• Partikel dan gelombang sejak lama dikenal sebagai dua kuantitas yang berbeda dan sama sekali tidak berhubungan
• elektron dikenal sebagai partikel bermuatan negatif dan menjadi penghantar listrik dalam logam
• cahaya dikenal sebagai radiasi gelombang EM dari benda yang dipanaskan
• Berdasarkan keyakinan akan adanya simetri di alam, Louis de Broglie (1924) mengusulkan suatu hipotesis bahwa partikel dan gelombang EM saling berinteraksi
• gelombang EM memiliki beberapa sifat yang mirip partikel
• kumpulan partikel juga menunjukkan perilaku sebagai gelombang EM
• De Broglie mengusulkan suatu hubungan antara panjang gelombang  dengan momentum partikel p = mv sebagai:
•  = h/p
• dengan h adalah konstanta Planck = 6.626 x 10-34 J sec.



DAFTAR PUSTAKA

Label: Kimia SMU Kelas XI
http://kimiadahsyat.blogspot.com/2009/06/sifat-dualisme-gelombang-materi.html
Soedojo peter.2001.AZAS-AZAS ILMU FISIKA jilid 4 FISIKA MODERN. gadjah mada university press:yogyakarta.
Krane kenneth.2006.FISIKA MODERN.penerbit universitas indonesia(UI press):jakarta.

Belajar & Pembelajaran Fisika

BAB I
PENDAHULUAN
Hasil-hasil pengajaran dan pembelajaran berbagai bidang studi terbukti selalu kurang memuaskan berbagai pihak (yang berkepentingan – stakeholder). Hal tersebut setidak-tidaknya disebabkan oleh tiga hal.
 Pertama, perkembangan kebutuhan dan aktivitas berbagai bidang kehidupan selalu meninggalkan proses/hasil kerja lembaga pendidikan atau melaju lebih dahulu daripada proses pengajaran dan pembelajaran sehingga hasil-hasil pengajaran dan pembelajaran tidak cocok/pas dengan kenyataan kehidupan yang diarungi oleh siswa.
 Kedua, pandangan-pandangan dan temuan-temuan kajian (yang baru) dari berbagai bidang tentang pembelajaran dan pengajaran membuat paradigma, falsafah, dan metodologi pembelajaran yang ada sekarang tidak memadai atau tidak cocok lagi.
 Ketiga, berbagai permasalahan dan kenyataan negatif tentang hasil pengajaran dan pembelajaran menuntut diupayakannya pembaharuan paradigma, falsafah, dan metodologi pengajaran dan pembelajaran. Dengan demikian, diharapkan mutu dan hasil pembelajaran dapat makin baik dan meningkat
Untuk memperbaiki dan meningkatkan mutu proses dan hasil pembelajaran – di samping juga menyelaraskan dan menyerasikan proses pembelajaran dengan pandangan-pandangan dan temuan-temuan baru di berbagai bidang – falsafah dan metodologi pembelajaran senantiasa dimutakhirkan, diperbaharui, dan dikembangkan oleh berbagai kalangan khususnya kalangan pendidikan-pengajaran-pembelajaran. Oleh karena itu, falsafah dan metodologi pembelajaran silih berganti dipertimbangkan, digunakan atau diterapkan dalam proses pembelajaran dan pengajaran. Lebih-lebih dalam dunia yang lepas kendali atau berlari tunggang-langgang (runway world – istilah Anthony Giddens) sekarang, falsafah dan metodologi pembelajaran sangat cepat berubah dan berganti, bahkan bermunculan secara serempak; satu falsafah dan metodologi pembelajaran dengan cepat dirasakan usang dan ditinggalkan, kemudian diganti (dengan cepat pula) dengan dan dimunculkan satu falsafah dan metodologi pembelajaran yang lain, malahan sering diumumkan atau dipopulerkan secara serentak beberapa falsafah dan metodologi pembelajaran.
Tidak mengherankan, dalam beberapa tahun terakhir ini di Indonesia telah berkelebatan (muncul, populer, surut, tenggelam) berbagai falsafah dan metodologi pembelajaran yang dipandang baru-mutakhir meskipun akar-akar atau sumber-sumber pandangannya sebenarnya sudah ada sebelumnya, malah jauh sebelumnya. Beberapa di antaranya (yang banyak dibicarakan, didiskusikan, dan dicobakan oleh pelbagai kalangan pembelajaran dan sekolah) dapat dikemukakan di sini, yaitu pembelajaran konstruktivis, pembelajaran kooperatif, pembelajaran terpadu, pembelajaran aktif, pembelajaran kontekstual (contextual teaching and learning, CTL), pembelajaran berbasis projek (project based learning), pembelajaran berbasis masalah (problem based learning), pembelajaran interaksi dinamis, dan pembelajaran kuantum (quantum learning). Dibandingkan dengan falsafah dan metodologi pembelajaran lainnya, falsafah dan metodologi pembelajaran kuantum yang disebut terakhir tampak relatif lebih populer dan lebih banyak disambut gembira oleh pelbagai kalangan di Indonesia berkat penerbitan beberapa buku mengenai hal tersebut oleh Penerbit KAIFA Bandung [Quantum Learning, Quantum Business, dan Quantum Teaching] – di samping berkat upaya popularisasi yang dilakukan oleh perbagai pihak melalui seminar, pelatihan, dan penerapan tentangnya. Walaupun demikian, masih banyak pihak yang mengenali pembelajaran kuantum secara terbatas – terutama terbatas pada bangun (konstruks) utamanya.
Segi-segi kesejarahan, akar pandangan, dan keterbatasannya belum banyak dibahas orang. Ini berakibat belum dikenalinya pembelajaran kuantum secara utuh dan lengkap.Sejalan dengan itu, tulisan ini mencoba memaparkan ihwal pembelajaran kuantum secara relatih utuh dan lengkap agar kita dapat mengenalinya lebih baik dan mampu menempatkannya secara proporsional di antara pelbagai falsafah dan metodologi pembelajaran lainnya – yang sekarang juga berkembang dan populer di Indonesia.
Secara berturut-turut, tulisan ini memaparkan
(1) latar belakang atau sejarah kemunculan pembelajaran kuantum,
(2) akar-akar atau dasar-dasar teoretis dan empiris yang membentuk bangun pembelajaran kuantum, dan
(3) pandangan-pandangan pokok yang membentuk karakteristik pembelajaran kuantum dan
(4) kemungkinan penerapan pembelajaran kuantum dalam berbagai bidang terutama bidang pengajaran sekolah.
Paparan ini lebih merupakan rekonstruksi pembelajaran kuantum yang didasarkan atas pemahaman dan persepsi penulis sendiri daripada resume atau rangkuman atas pikiran-pikiran pencetusnya.
LATAR BELAKANG KEMUNCULAN
Tokoh utama di balik pembelajaran kuantum adalah Bobbi DePorter, seorang ibu rumah tangga yang kemudian terjun di bidang bisnis properti dan keuangan, dan setelah semua bisnisnya bangkrut akhirnya menggeluti bidang pembelajaran. Dialah perintis, pencetus, dan pengembang utama pembelajaran kuantum. Semenjak tahun 1982 DePorter mematangkan dan mengembangkan gagasan pembelajaran kuantum di SuperCamp, sebuah lembaga pembelajaran yang terletak Kirkwood Meadows, Negara Bagian California, Amerika Serikat. SuperCamp sendiri didirikan atau dilahirkan oleh Learning Forum, sebuah perusahahan yang memusatkan perhatian pada hal-ihwal pembelajaran guna pengembanga potensi diri manusia. Dengan dibantu oleh teman-temannya, terutama Eric Jansen, Greg Simmons, Mike Hernacki, Mark Reardon, dan Sarah Singer-Nourie, DePorter secara terprogram dan terencana mengujicobakan gagasan-gagasan pembelajaran kuantum kepada para remaja di SuperCamp selama tahun-tahun awal dasawarsa 1980-an. “Metode ini dibangun berdasarkan pengalaman dan penelitian terhadap 25 ribu siswa dan sinergi pendapat ratusan guru di SuperCamp”, jelas DePorter dalam Quantum Teaching (2001: 4). “Di SuperCamp inilah prinsip-prinsip dan metode-metode Quantum Learning menemukan bentuknya”, ungkapnya dalam buku Quantum Learning (1999:3).
Pada tahap awal perkembangannya, pembelajaran kuantum terutama dimaksudkan untuk membantu meningkatkan keberhasilan hidup dan karier para remaja di rumah atau ruang-ruang rumah; tidak dimaksudkan sebagai metode dan strategi pembelajaran untuk mencapai keberhasilan lebih tinggi di sekolah atau ruang-ruang kelas. Lambat laun, orang tua para remaja juga meminta kepada DePorter untuk mengadakan program program pembelajaran kuantum bagi mereka. “Mereka telah melihat hal yang telah dilakukan Quantum Learning pada anak-anak mereka, dan mereka ingin belajar untuk menerapkan teknik dan prinsip yang sama dalam hidup dan karier mereka sendiri – perusahaan komputer, kantor pengacara, dan tentu agen-agen realestat mereka. Demikian lingkaran ini terus bergulir”, papar DePorter dalam Quantum Business (2001:27). Demikianlah, metode pembelajaran kuantum merambah berbagai tempat dan bidang kegiatan manusia, mulai lingkungan pengasuhan di rumah (parenting), lingkungan bisnis, lingkungan perusahaan, sampai dengan lingkungan kelas (sekolah). Hal ini menunjukkan bahwa sebenarnya pembelajaran kuantum merupakan falsafah dan metodologi pembelajaran yang bersifat umum, tidak secara khusus diperuntukkan bagi pengajaran di sekolah.
Falsafah dan metodologi pembelajaran kuantum yang telah dikembangkan, dimatangkan, dan diujicobakan tersebut selanjutnya dirumuskan, dikemukakan, dan dituliskan secara utuh dan lengkap dalam buku Quantum Learning: Unleashing The Genius in You. Buku ini diterbitkan pertama kali pada tahun 1992 oleh Dell Publishing New York. Pada tahun 1999 muncul terjemahannya dalam bahasa Indonesia yang diterbitkan oleh Penerbit KAIFA Bandung dengan judul Quantum Learning: Membiasakan Belajar Nyaman dan Menyenangkan). Buku yang ditulis oleh DePorter bersama Mike Hernacki – mitra kerja DePorter yang mantan guru dan pengacara – tersebut memaparkan pandangan-pandangan umum dan prinsip-prinsip dasar yang membentuk bangun pembelajaran kuantum. Pandangan-pandangan umum dan prinsip-prinsip dasar yang termuat dalam buku Quantum Learning selanjutnya diterapkan, dipraktikkan, dan atau diimplementasikan dalam lingkungan bisnis dan kelas (sekolah). Penerapan, pemraktikan, dan atau pengimplementasian pembelajaran kuantum di lingkungan bisnis termuat dalam buku Quantum Business: Achieving Success Through Quantum Learning yang terbit pertama kali pada tahun 1997 dan diterbitkan oleh Dell Publishing, New York. Buku yang ditulis oleh DePorter bersama Mike Hernacki ini sudah diterjemahkan dalam bahasa Indonesia oleh Basyrah Nasution dan diterbitkan oleh Penerbit KAIFA Bandung pada tahun 1999 dengan judul Quantum Business: Membiasakan Berbisnis secara Etis dan Sehat. Sementara itu, penerapan, pemraktikkan, dan pengimplementasian pembelajaran kuantum di lingkungan sekolah (pengajaran) termuat dalam buku Quantum Teaching: Orchestrating Student Success yang terbit pertama kali tahun 1999 dan diterbitkan oleh Penerbit Allyn and Bacon, Boston. Buku yang ditulis oleh DePorter bersama Mark Reardon dan Sarah Singer-Nourie ini sudah diterjemahkan dalam bahasa Indonesia oleh Ary Nilandari dan diterbitkan oleh Penerbit KAIFA Bandung pada tahun 2000 dengan judul Quantum Teaching: Mempraktikkan Quantum Learning di Ruang-ruang Kelas.
Dapat dikatakan bahwa ketiga buku tersebut laris (best-seller) di pasar. Lebih-lebih terjemahannya dalam bahasa Indonesia. Terjemahan bahasa Indonesia buku Quantum Learning dalam tempo tiga tahun sudah cetak ulang tiga belas kali; buku Quantum Business sudah cetak ulang lima kali dalam tempo dua tahun; dan buku Quantum Teaching sudah cetak ulang tiga kali dalam tempo satu tahun. Hal tersebut sekaligus memperlihatkan betapa populer dan menariknya falsafah dan metodologi pembelajaran kuantum di Indonesia dan bagi komunitas masyarakat Indonesia. Popularitas dan kemenarikan pembelajaran kuantum makin tampak kuat-tinggi ketika frekuensi penyelenggaraan seminar-seminar, pelatihan-pelatihan, dan pengujicobaan pembelajaran kuantum di Indonesia makin tinggi.



BAB II
PEMBELAJARAN KUANTUM SEBAGAI MODEL PEMBELAJARAN YANG MENYENANGKAN
AKAR-AKAR LANDASAN
Meskipun dinamakan pembelajaran kuantum, falsafah dan metodologi pembelajaran kuantum tidaklah diturunkan atau ditransformasikan secara langsung dari fisika kuantum yang sekarang sedang berkembang pesat. Tidak pula ditransformasikan dari prinsip-prinsip dan pandangan-pandangan utama fisika kuantum yang dikemukakan oleh Albert Einstein, seorang tokoh terdepan fisika kuantum. Jika ditelaah atau dibandingkan secara cermat, istilah kuantum [quantum] yang melekat pada istilah pembelajaran [learning] ternyata tampak berbeda dengan konsep kuantum dalam fisika kuantum. Walaupun demikian, serba sedikit tampak juga kemiripannya. Kemiripannya terutama terlihat dalam konsep kuantum. Dalam fisika kuantum, istilah kuantum memang diberi konsep perubahan energi menjadi cahaya selain diyakini adanya ketakteraturan dan indeterminisme alam semesta. Sementara itu, dalam pandangan DePorter, istilah kuantum bermakna “interaksi-interaksi yang mengubah energi menjadi cahaya” dan istilah pembelajaran kuantum bermakna “interaksi-teraksi yang mengubah energi menjadi cahaya karena semua kehidupan adalah energi”. Di samping itu, dalam pembelajaran kuantum diyakini juga adanya keberagaman dan intedeterminisme. Konsep dan keyakinan ini lebih merupakan analogi rumus Teori Relativitas Einstein, bukan transformasi rumus Teori Relativitas Einstein. Hal ini makin tampak bila disimak pernyataan DePorter bahwa “Rumus yang terkenal dalam fisika kuantum adalah massa kali kecepatan cahaya kuadrat sama dengan energi. Mungkin Anda sudah pernah melihat persamaan ini ditulis sebagai E=mc2. Tubuh kita secara fisik adalah materi. Sebagai pelajar, tujuan kita adalah meraih sebanyak mungkin cahaya: interaksi, hubungan, inspirasi agar menghasilkan energi cahaya” (1999:16). Jelaslah di sini bahwa prinsip-prinsip pembelajaran kuantum bukan penurunan, adaptasi, modifikasi atau transformasi prinsip-prinsip fisika kuantum, melainkan hanya sebuah analogi prinsip relativitas Einstein, bahkan analogi term/konsep saja. Jadi, akar landasan pembelajaran kuantum bukan fisika kuantum
Pembelajaran kuantum sesungguhnya merupakan ramuan atau rakitan dari berbagai teori atau pandangan psikologi kognitif dan pemrograman neurologi/neurolinguistik yang jauh sebelumnya sudah ada. Di samping itu, ditambah dengan pandangan-pandangan pribadi dan temuan-temuan empiris yang diperoleh DePorter ketika mengembangkan konstruk awal pembelajaran kuantum. Hal ini diakui sendiri oleh DePorter. Dalam Quantum Learning (1999:16) dia mengatakan sebagai berikut.
Quantum Learning menggabungkan sugestologi, teknik pemercepartan belajar, dan NLP dengan teori, keyakinan, dan metode kami sendiri. Termasuk di antaranya konsep-konsep kunci dari berbagai teori dan strategi belajar yang lain, seperti:
• Teori otak kanan/kiri
• Teori otak triune (3 in 1)
• Pilihan modalitas (visual, auditorial, dan kinestetik)
• Teori kecerdasan ganda
• Pendidikan holistik (menyeluruh)
• Belajar berdasarkan pengalaman
• Belajar dengan symbol
• Simulasi/permainan


Sementara itu, dalam Quantum Teaching (2000:4) dikatakannya sebagai berikut.
Quantum Teaching adalah badan ilmu pengetahuan dan metodologi yang digunakan dalam rancangan, penyajian, dan fasilitasi SuperCamp. Diciptakan berdasarkan teori-teori pendidikan seperti Accelerated Learning (Lozanov), Multiple Intelegences (Gardner), Neuro-Linguistic Programming (Grinder dan Bandler), Experiential Learning (Hahn), Socratic Inquiry, Cooperative Learning (Johnson dan Johnson), dan Element of Effective Instruction (Hunter).
Dua kutipan tersebut dengan gamblang menunjukkan bahwa ada bermacam-macam akar pandangan dan pikiran yang menjadi landasan pembelajaran kuantum. Berbagai akar pandangan dan pikiran itu diramu, bahkan disatukan dalam sebuah model teoretis yang padu dan utuh hingga tidak tampak lagi asalnya – pada gilirannya model teoretis tersebut diujicobakan secara sistemis sampai ditemukan bukti-bukti empirisnya.
Di antara berbagai akar pandangan dan pikiran yang menjadi landasan pembelajaran kuantum yang dikemukakan oleh DePorter di atas, tidak dapat dipungkiri bahwa pandangan-pandangan teori sugestologi atau pembelajaran akseleratif Lozanov, teori kecerdasan ganda Gardner, teori pemrograman neurolinguistik (NLP) Grinder dan Bandler, dan pembelajaran eksperensial [berdasarkan pengalaman] Hahn serta temuan-temuan mutakhir neurolinguistik mengenai peranan dan fungsi otak kanan mendominasi atau mewarnai secara kuat sosok [profil] pembelajaran kuantum. Teori kecerdasan ganda, teori pemograman neurolinguistik, dan temuan-temuan mutakhir neurolinguistik sangat berpengaruh terhadap pandangan dasar pembelajaran kuantum mengenai kemampuan manusia selaku pembelajar – khususnya kemampuan otak dan pikiran pembelajar. Selain itu, dalam batas tertentu teori dan temuan tersebut juga berpengaruh terhadap pandangan dasar pembelajaran kuantum tentang perancangan, penyajian, dan pemudahan [fasilitasi] proses pembelajaran untuk mengembangkan dan melejitkan potensi-diri pembelajar – khususnya kemampuan dan kekuatan pikiran pembelajar. Sementara itu, pembelajaran akseleratif, pembelajaran eksperensial, dan pembelajaran kooperatif sangat berpengaruh terhadap pandangan dasar pembelajaran kuantum terhadap kiat-kiat merancang, menyajikan, mengelola, memudahkan, dan atau mengorkestrasi proses pembelajaran yang efektif dan optimal – termasuk kiat memperlakukan faktor-faktor yang menentukan keberhasilan proses pembelajaran.
KARAKTERISTIK UMUM
Walaupun memiliki akar landasan bermacam-macam sebagaimana dikemukakan di atas, pembelajaran kuantum memiliki karakteristik umum yang dapat memantapkan dan menguatkan sosoknya. Beberapa karakteristik umum yang tampak membentuk sosok pembelajaran kuantum sebagai berikut
• Pembelajaran kuantum berpangkal pada psikologi kognitif, bukan fisika kuantum meskipun serba sedikit istilah dan konsep kuantum dipakai. Oleh karena itu, pandangan tentang pembelajaran, belajar, dan pembelajar diturunkan, ditransformasikan, dan dikembangkan dari berbagai teori psikologi kognitif; bukan teori fisika kuantum. Dapat dikatakan di sini bahwa pembelajaran kuantum tidak berkaitan erat dengan fisika kuantum – kecuali analogi beberapa konsep kuantum. Hal ini membuatnya lebih bersifat kognitif daripada fisis
• Pembelajaran kuantum lebih bersifat humanistis, bukan positivistis-empiris, “hewan-istis”, dan atau nativistis. Manusia selaku pembelajar menjadi pusat perhatiannya. Potensi diri, kemampuan pikiran, daya motivasi, dan sebagainya dari pembelajar diyakini dapat berkembang secara maksimal atau optimal. Hadiah dan hukuman dipandang tidak ada karena semua usaha yang dilakukan manusia patut dihargai. Kesalahan dipandang sebagai gejala manusiawi. Ini semua menunjukkan bahwa keseluruhan yang ada pada manusia dilihat dalam perspektif humanistis
• Pembelajaran kuantum lebih bersifat konstruktivis(tis), bukan positivistis-empiris, behavioristis, dan atau maturasionistis. Karena itu, menurut hemat penulis, nuansa konstruktivisme dalam pembelajaran kuantum relatif kuat. Malah dapat dikatakan di sini bahwa pembelajaran kuantum merupakan salah satu cerminan filsafat konstruktivisme kognitif, bukan konstruktivisme sosial. Meskipun demikian, berbeda dengan konstruktivisme kognitif lainnya yang kurang begitu mengedepankan atau mengutamakan lingkungan, pembelajaran kuantum justru menekankan pentingnya peranan lingkungan dalam mewujudkan pembelajaran yang efektif dan optimal dan memudahkan keberhasilan tujuan pembelajaran
• Pembelajaran kuantum berupaya memadukan [mengintegrasikan], menyinergikan, dan mengolaborasikan faktor potensi-diri manusia selaku pembelajar dengan lingkungan [fisik dan mental] sebagai konteks pembelajaran. Atau lebih tepat dikatakan di sini bahwa pembelajaran kuantum tidak memisahkan dan tidak membedakan antara res cogitans dan res extenza, antara apa yang di dalam dan apa yang di luar. Dalam pandangan pembelajaran kuantum, lingkungan fisikal-mental dan kemampuan pikiran atau diri manusia sama-sama pentingnya dan saling mendukung. Karena itu, baik lingkungan maupun kemampuan pikiran atau potensi diri manusia harus diperlakukan sama dan memperoleh stimulan yang seimbang agar pembelajaran berhasil baik
• Pembelajaran kuantum memusatkan perhatian pada interaksi yang bermutu dan bermakna, bukan sekadar transaksi makna. Dapat dikatakan bahwa interaksi telah menjadi kata kunci dan konsep sentral dalam pembelajaran kuantum. Karena itu, pembelajaran kuantum memberikan tekanan pada pentingnya interaksi, frekuensi dan akumulasi interaksi yang bermutu dan bermakna. Di sini proses pembelajaran dipandang sebagai penciptaan interaksi-interaksi bermutu dan bermakna yang dapat mengubah energi kemampuan pikiran dan bakat alamiah pembelajar menjadi cahaya-cahaya yang bermanfaat bagi keberhasilan pembelajar. Interaksi yang tidak mampu mengubah energi menjadi cahaya harus dihindari, kalau perlu dibuang jauh dalam proses pembelajaran. Dalam kaitan inilah komunikasi menjadi sangat penting dalam pembelajaran kuantum.
• Pembelajaran kuantum sangat menekankan pada pemercepatan pembelajaran dengan taraf keberhasilan tinggi. Di sini pemercepatan pembelajaran diandaikan sebagai lompatan kuantum. Pendeknya, menurut pembelajaran kuantum, proses pembelajaran harus berlangsung cepat dengan keberhasilan tinggi. Untuk itu, segala hambatan dan halangan yang dapat melambatkan proses pembelajaran harus disingkirkan, dihilangkan, atau dieliminasi. Di sini pelbagai kiat, cara, dan teknik dapat dipergunakan, misalnya pencahayaan, iringan musik, suasana yang menyegarkan, lingkungan yang nyaman, penataan tempat duduk yang rileks, dan sebagainya. Jadi, segala sesuatu yang menghalangi pemercepatan pembelajaran harus dihilangkan pada satu sisi dan pada sisi lain segala sesuatu yang mendukung pemercepatan pembelajaran harus diciptakan dan dikelola sebaik-baiknya.
• Pembelajaran kuantum sangat menekankan kealamiahan dan kewajaran proses pembelajaran, bukan keartifisialan atau keadaan yang dibuat-buat. Kealamiahan dan kewajaran menimbulkan suasana nyaman, segar, sehat, rileks, santai, dan menyenangkan, sedang keartifisialan dan kepura-puraan menimbulkan suasana tegang, kaku, dan membosankan. Karena itu, pembelajaran harus dirancang, disajikan, dikelola, dan difasilitasi sedemikian rupa sehingga dapat diciptakan atau diwujudkan proses pembelajaran yang alamiah dan wajar. Di sinilah para perancang dan pelaksana pembelajaran harus bekerja secara proaktif dan suportif untuk menciptakan kealamiahan dan kewajaran proses pembelajaran
• Pembelajaran kuantum sangat menekankan kebermaknaan dan kebermutuan proses pembelajaran. Proses pembelajaran yang tidak bermakna dan tidak bermutu membuahkan kegagalan, dalam arti tujuan pembelajaran tidak tercapai. Sebab itu, segala upaya yang memungkinkan terwujudnya kebermaknaan dan kebermutuan pembelajaran harus dilakukan oleh pengajar atau fasilitator. Dalam hubungan inilah perlu dihadirkan pengalaman yang dapat dimengerti dan berarti bagi pembelajar, terutama pengalaman pembelajar perlu diakomodasi secara memadai. Pengalaman yang asing bagi pembelajar tidak perlu dihadirkan karena hal ini hanya membuahkan kehampaan proses pembelajaran. Untuk itu, dapat dilakukan upaya membawa dunia pembelajar ke dalam dunia pengajar pada satu pihak dan pada pihak lain mengantarkan dunia pengajar ke dalam dunia pembelajar. Hal ini perlu dilakukan secara seimbang.
• Pembelajaran kuantum memiliki model yang memadukan konteks dan isi pembelajaran. Konteks pembelajaran meliputi suasana yang memberdayakan, landasan yang kukuh, lingkungan yang menggairahkan atau mendukung, dan rancangan belajar yang dinamis. Isi pembelajaran meliputi penyajian yang prima, pemfasilitasan yang lentur, keterampilan belajar-untuk-belajar, dan keterampilan hidup. Konteks dan isi ini tidak terpisahkan, saling mendukung, bagaikan sebuah orkestra yang memainkan simfoni. Pemisahan keduanya hanya akan membuahkan kegagalan pembelajaran. Kepaduan dan kesesuaian keduanya secara fungsional akan membuahkan keberhasilan pembelajaran yang tinggi; ibaratnya permainan simfoni yang sempurna yang dimainkan dalam sebuah orkestra
• Pembelajaran kuantum memusatkan perhatian pada pembentukan keterampilan akademis, keterampilan [dalam] hidup, dan prestasi fisikal atau material. Ketiganya harus diperhatikan, diperlakukan, dan dikelola secara seimbang dan relatif sama dalam proses pembelajaran; tidak bisa hanya salah satu di antaranya. Dikatakan demikian karena pembelajaran yang berhasil bukan hanya terbentuknya keterampilan akademis dan prestasi fisikal pembelajar, namun lebih penting lagi adalah terbentuknya keterampilan hidup pembelajar. Untuk itu, kurikulum harus disusun sedemikian rupa sehingga dapat terwujud kombinasi harmonis antara keterampilan akademis, keterampilan hidup, dan prestasi fisikal.
• Pembelajaran kuantum menempatkan nilai dan keyakinan sebagai bagian penting proses pembelajaran. Tanpa nilai dan keyakinan tertentu, proses pembelajaran kurang bermakna. Untuk itu, pembelajar harus memiliki nilai dan keyakinan tertentu yang positif dalam proses pembelajaran. Di samping itu, proses pembelajaran hendaknya menanamkan nilai dan keyakinan positif dalam diri pembelajar. Nilai dan keyakinan negatif akan membuahkan kegagalan proses pembelajaran. Misalnya, pembelajar perlu memiliki keyakinan bahwa kesalahan atau kegagalan merupakan tanda telah belajar; kesalahan atau kegagalan bukan tanda bodoh atau akhir segalanya. Dalam proses pembelajaran dikembangkan nilai dan keyakinan bahwa hukuman dan hadiah (punishment dan reward) tidak diperlukan karena setiap usaha harus diakui dan dihargai. Nilai dan keyakinan positif seperti ini perlu terus-menerus dikembangkan dan dimantapkan. Makin kuat dan mantap nilai dan keyakinan positif yang dimiliki oleh pembelajar, kemungkinan berhasil dalam pembelajaran akan makin tinggi. Dikatakan demikian sebab “Nilai-nilai ini menjadi kacamata yang dengannya kita memandang dunia. Kita mengevaluasi, menetapkan prioritas, menilai, dan bertingkah laku berdasarkan cara kita memandang kehidupan melalui kacamata ini”, ungkap DePorter dalam Quantum Business (2000:54).
• Pembelajaran kuantum mengutamakan keberagaman dan kebebasan, bukan keseragaman dan ketertiban. Keberagaman dan kebebasan dapat dikatakan sebagai kata kunci selain interaksi. Karena itu, dalam pembelajaran kuantum berkembang ucapan: Selamat datang keberagaman dan kebebasan, selamat tinggal keseragaman dan ketertiban!. Di sinilah perlunya diakui keragaman gaya belajar siswa atau pembelajar, dikembangkannya aktivitas-aktivitas pembelajar yang beragam, dan digunakannya bermacam-macam kiat dan metode pembelajaran. Pada sisi lain perlu disingkirkan penyeragaman gaya belajar pembelajar, aktivitas pembelajaran di kelas, dan penggunaan kiat dan metode pembelajaran.
• Pembelajaran kuantum mengintegrasikan totalitas tubuh dan pikiran dalam proses pembelajaran. Aktivitas total antara tubuh dan pikiran membuat pembelajaran bisa berlangsung lebih nyaman dan hasilnya lebih optimal.

PRINSIP-PRINSIP UTAMA
Prinsip dapat berarti (1) aturan aksi atau perbuatan yang diterima atau dikenal dan (2) sebuah hukum, aksioma, atau doktrin fundamental. Pembelajaran kuantum juga dibangun di atas aturan aksi, hukum, aksioma, dan atau doktrin fundamental mengenai dengan pembelajaran dan pembelajar. Setidak-tidaknya ada tiga macam prinsip utama yang membangun sosok pembelajaran kuantum. Ketiga prinsip utama yang dimaksud sebagai berikut.
1) Prinsip utama pembelajaran kuantum berbunyi: Bawalah Dunia Mereka (Pembelajar) ke dalam Dunia Kita (Pengajar), dan Antarkan Dunia Kita (Pengajar) ke dalam Dunia Mereka (Pembelajar). Setiap bentuk interaksi dengan pembelajar, setiap rancangan kurikulum, dan setiap metode pembelajaran harus dibangun di atas prinsip utama tersebut. Prinsip tersebut menuntut pengajar untuk memasuki dunia pembelajar sebagai langkah pertama pembelajaran selain juga mengharuskan pengajar untuk membangun jembatan otentik memasuki kehidupan pembelajar. Untuk itu, pengajar dapat memanfaatkan pengalaman-pengalaman yang dimiliki pembelajar sebagai titik tolaknya. Dengan jalan ini pengajar akan mudah membelajarkan pembelajar baik dalam bentuk memimpin, mendampingi, dan memudahkan pembelajar menuju kesadaran dan ilmu yang lebih luas. Jika hal tersebut dapat dilaksanakan, maka baik pembelajar maupun pembelajar akan memperoleh pemahaman baru. Di samping berarti dunia pembelajar diperluas, hal ini juga berarti dunia pengajar diperluas. Di sinilah Dunia Kita menjadi dunia bersama pengajar dan pembelajar. Inilah dinamika pembelajaran manusia selaku pembelajar.
2) Dalam pembelajaran kuantum juga berlaku prinsip bahwa proses pembelajaran merupakan permainan orkestra simfoni. Selain memiliki lagu atau partitur, pemainan simfoni ini memiliki struktur dasar chord. Struktur dasar chord ini dapat disebut prinsip-prinsip dasar pembelajaran kuantum. Prinsip-prinsip dasar ini ada lima macam berikut ini.]
 Ketahuilah bahwa Segalanya Berbicara
Dalam pembelajaran kuantum, segala sesuatu mulai lingkungan pembelajaran sampai dengan bahasa tubuh pengajar, penataan ruang sampai sikap guru, mulai kertas yang dibagikan oleh pengajar sampai dengan rancangan pembelajaran, semuanya mengirim pesan tentang pembelajaran.
 Ketahuilah bahwa Segalanya Betujuan
Semua yang terjadi dalam proses pengubahan energi menjadi cahaya mempunyai tujuan. Tidak ada kejadian yang tidak bertujuan. Baik pembelajar maupun pengajar harus menyadari bahwa kejadian yang dibuatnya selalu bertujuan.
 Sadarilah bahwa Pengalaman Mendahului Penamaan
Proses pembelajaran paling baik terjadi ketika pembelajar telah mengalami informasi sebelum mereka memperoleh nama untuk apa yang mereka pelajari. Dikatakan demikian karena otak manusia berkembang pesat dengan adanya stimulan yang kompleks, yang selanjutnya akan menggerakkan rasa ingin tahu.
 Akuilah Setiap Usaha yang Dilakukan dalam Pembelajaran
Pembelajaran atau belajar selalu mengandung risiko besar. Dikatakan demikian karena pembelajaran berarti melangkah keluar dari kenyamanan dan kemapanan di samping berarti membongkar pengetahuan sebelumnya. Pada waktu pembelajar melakukan langkah keluar ini, mereka patut memperoleh pengakuan atas kecakapan dan kepercayaan diri mereka. Bahkan sekalipun mereka berbuat kesalahan, perlu diberi pengakuan atas usaha yang mereka lakukan.
 Sadarilah bahwa Sesuatu yang Layak Dipelajari Layak Pula Dirayakan
Segala sesuatu yang layak dipelajari oleh pembelajar sudah pasti layak pula dirayakan keberhasilannya. Perayaaan atas apa yang telah dipelajari dapat memberikan balikan mengenai kemajuan dan meningkatkan asosiasi emosi positif dengan pembelajaran.
3) Dalam pembelajaran kuantum juga berlaku prinsip bahwa pembelajaran harus berdampak bagi terbentuknya keunggulan. Dengan kata lain, pembelajaran perlu diartikan sebagai pembentukan keunggulan. Oleh karena itu, keunggulan ini bahkan telah dipandang sebagai jantung fondasi pembelajaran kuantum. Ada delapan prinsip keunggulan – yang juga disebut delapan kunci keunggulan – yang diyakini dalam pembelajaran kuantum. Delapan kunci keunggulan itu sebagai berikut.
 Terapkanlah Hidup dalam Integritas
Dalam pembelajaran, bersikaplah apa adanya, tulus, dan menyeluruh yang lahir ketika nilai-nilai dan perilaku kita menyatu. Hal ini dapat meningkatkan motivasi belajar yang pada gilirannya mencapai tujuan belajar. Dengan kata lain, integritas dapat membuka pintu jalan menuju prestasi puncak.


 Akuilah Kegagalan Dapat Membawa Kesuksesan
Dalam pembelajaran, kita harus mengerti dan mengakui bahwa kesalahan atau kegagalan dapat memberikan informasi kepada kita yang diperlukan untuk belajar lebih lanjut sehingga kita dapat berhasil. Kegagalan janganlah membuat cemas terus menerus dan diberi hukuman karena kegagalan merupakan tanda bahwa seseorang telah belajar.
 Berbicaralah dengan Niat Baik
Dalam pembelajaran, perlu dikembangkan keterampilan berbicara dalam arti positif dan bertanggung jawab atas komunikasi yang jujur dan langsung. Niat baik berbicara dapat meningkatkan rasa percaya diri dan motivasi belajar pembelajar
 Tegaskanlah Komitmen
Dalam pembelajaran, baik pengajar maupun pembelajar harus mengikuti visi-misi tanpa ragu-ragu, tetap pada rel yang telah ditetapkan. Untuk itu, mereka perlu melakukan apa saja untuk menyelesaikan pekerjaan. Di sinilah perlu dikembangkan slogan: Saya harus menyelesaikan pekerjaan yang memang harus saya selesaikan, bukan yang hanya saya senangi.
 Jadilah Pemilik
Dalam pembelajaran harus ada tanggung jawab. Tanpa tanggung jawab tidak mungkin terjadi pembelajaran yang bermakna dan bermutu. Karena itu, pengajar dan pembelajar harus bertanggung jawab atas apa yang menjadi tugas mereka. Mereka hendaklah menjadi manusia yang dapat diandalkan, seseorang yang bertanggung jawab.
 Tetaplah Lentur
Dalam pembelajaran, pertahankan kemampuan untuk mengubah yang sedang dilakukan untuk memperoleh hasil yang diinginkan. Pembelajar, lebih-lebih pengajar, harus pandai-pandai membaca lingkungan dan suasana, dan harus pandai-pandai mengubah lingkungan dan suasana bilamana diperlukan. Misalnya, di kelas guru dapat saja mengubah rencana pembelajaran bilamana diperlukan demi keberhasilan siswa-siswanya; jangan mati-matian mempertahankan rencana pembelajaran yang telah dibuat.
 Pertahankanlah Keseimbangan
Dalam pembelajaran, pertahankan jiwa, tubuh, emosi, dan semangat dalam satu kesatuan dan kesejajaran agar proses dan hasil pembelajaran efektif dan optimal. Tetap dalam keseimbangan merupakan proses berjalan yang membutuhkan penyesuaian terus-menerus sehingga diperlukan sikap dan tindakan cermat dari pembelajar dan pengajar.
PANDANGAN TENTANG PEMBELAJARAN DAN PEMBELAJAR
Selain memiliki karakteristik umum dan prinsip-prinsip utama seperti dikemukakan di atas, pembelajaran kuantum memiliki pandangan tertentu tentang pembelajaran dan pembelajar. Beberapa pandangan mengenai pembelajaran dan pembelajar yang dimaksud dapat dikemukakan secara ringkas berikut.
• Pembelajaran berlangsung secara aktif karena pembelajar itu aktif dan kreatif. Bukti keaktifan dan kekreatifan itu dapat ditemukan dalam peranan dan fungsi otak kanan dan otak kiri pembelajar. Pembelajaran pasif mengingkari kenyataan bahwa pembelajar itu aktif dan kreatif, mengingkari peranan dan fungsi otak kanan dan otak kiri.
• Pembelajaran berlangsung efektif dan optimal bila didasarkan pada karakteristik gaya belajar pembelajar sehingga penting sekali pemahaman atas gaya belajar pembelajar. Setidak-tidaknya ada tiga gaya belajar yang harus diperhitungkan dalam proses pembelajaran, yaitu gaya auditoris, gaya visual, dan gaya kinestetis.
• Pembelajaran berlangsung efektif dan optimal bila tercipta atau terdapat suasana nyaman, menyenangkan, rileks, sehat, dan menggairahkan sehingga kenyamanan, kesenangan, kerileksan, dan kegairahan dalam pembelajaran perlu diciptakan dan dipelihara. Pembelajar dapat mencapai hasil optimal bila berada dalam suasana nyaman, menyenangkan, rileks, sehat, dan menggairahkan. Untuk itu, baik lingkungan fisikal, lingkungan mental, dan suasana harus dirancang sedemikian rupa agar membangkitkan kesan nyaman, rileks, menyenangkan, sehat, dan menggairahkan.
• Pembelajaran melibatkan lingkungan fisikal-mental dan kemampuan pikiran atau potensi diri pembelajar secara serempak. Oleh karena itu, penciptaan dan pemeliharaan lingkungan yang tepat sangat penting bagi tercapainya proses pembelajaran yang efektif dan optimal. Dalam konteks inilah perlu dipelihara suasana positif, aman, suportif, santai, dan menyenangkan; lingkungan belajar yang nyaman, membangkitkan semangat, dan bernuansa musikal; dan lingkungan fisik yang partisipatif, saling menolong, mengandung permainan, dan sejenisnya.
• Pembelajaran terutama pengajaran membutuhkan keserasian konteks dan isi. Segala konteks pembelajaran perlu dikembangkan secara serasi dengan isi pembelajaran. Untuk itulah harus diciptakan dan dipelihara suasana yang memberdayakan atau menggairahkan, landasan yang kukuh, lingkungan fisikal-mental yang mendukung, dan rancangan pembelajaran yang dinamis. Selain itu, perlu juga diciptakan dan dipelihara penyajian yang prima, pemfasilitasan yang lentur, keterampilan belajar yang merangsang untuk belajar, dan keterampilan hidup yang suportif.
• Pembelajaran berlangsung optimal bilamana ada keragaman dan kebebasan karena pada dasarnya pembelajar amat beragam dan memerlukan kebebasan. Karena itu, keragaman dan kebebasan perlu diakui, dihargai, dan diakomodasi dalam proses pembelajaran. Keseragaman dan ketertiban (dalam arti kekakuan) harus dihindari karena mereduksi dan menyederhanakan potensi dan karakteristik pembelajar. Potensi dan karakteristik pembelajar sangat beragam yang memerlukan suasana bebas untuk aktualisasi atau artikulasi.



BAB III
PENUTUP
Berdasarkan paparan di atas dapat diketahui bahwa pembelajaran kuantum merupakan sebuah falsafah dan metodologi pembelajaran yang umum yang dapat diterapkan baik di dalam lingkungan bisnis, lingkungan rumah, lingkungan perusahanan, maupun di dalam lingkungan sekolah (pengajaran). Secara konseptual, falsafah dan metodologi pembelajaran kuantum membawa angin segar bagi dunia pembelajaran di Indonesia sebab karakteristik, prinsip-prinsip, dan pandangan-pandangannya jauh lebih menyegarkan daripada falsafah dan metodologi pembelajaran yang sudah ada (yang dominan watak behavioristis dan rasionalisme Cartesiannya). Meskipun demikian, secara nyata, keterandalan dan kebaikan falsafah dan metodologi pembelajaran kuantum ini masih perlu diuji dan dikaji lebih lanjut. Lebih-lebih kemungkinan penerapannya dalam lingkungan Indonesia baik lingkungan rumah, lingkungan perusahaan, lingkungan bisnis maupun lingkungan kelas/sekolah (baca: pengajaran). Khusus penerapannya di lingkungan kelas menuntut perubahan pola berpikir para pelaksana pengajaran, budaya pengajaran dan pendidikan, dan struktur organisasi sekolah dan struktur pembelajaran. Jika perubahan-perubahan tersebut dapat dilakukan niscaya pembelajaran kuantum dapat dilaksanakan dengan hasil yang optimal.







DAFTAR RUJUKAN
DePorter, Bobbi dan Mike Hernacki. 1999. Quantum Learning: Membiasakan Belajar Nyaman dan Menyenangkan. Bandung: Penerbit KAIFA.
DePorter, Bobbi dan Mike Hernacki. 2000. Quantum Business: Membiasakan Bisnis secara Etis dan Sehat. Bandung: Penerbit KAIFA.
DePorter, Bobbi, Mark Reardon, dan Sarah Singer-Nourie. 2001. Quantum Teaching: Mempraktikkan Quantum Learning di Ruang-ruang Kelas. Bandung: Penerbit KAIFA.
Dryden, Gordon dan Jeanette Vos. 1999. The Learning Revolution: To Change the Way the World Learns. Selandia Baru: The Learning Web.
Giddens, Anthony. 2001. Runway World. Jakarta: Penerbit PT Gramedia Pustaka Utama.
Meier, Dave. 2000. The Accelerated Learning Handbook. New York: McGraw-Hill.
Silberman, Melvin L. 1996. Active Learning: 101 Step to Teach Any Subject. Massachusetts: A Simon and Schuster Company.
F:\ola\tugas\PEMBELAJARAN KUANTUM SEBAGAI MODEL PEMBELAJARAN YANG MENYENANGKAN « CERPEN LUBIS GRAFURA.htm

Biofisika Pendengaran Pada Manusia

BAB I
PENDAHULUAN

Proses produksi suara pada manusia dapat dibagi menjadi tiga buah proses fisiologis, yaitu : Pembentukan aliran udara dari paru-paru, Perubahan aliran udara dari paru-paru menjadi suara ( baik voiced maupun unvoiced yang dikenal dengan istilah phonation, dan artikulasi yaitu proses modulasi/pengaturan suara menjadi bunyi yang spesifik.
Organ tubuh yang terlibat pada proses produksi suara adalah : paru-paru, tenggorokan (trachea), laring (larynx), faring (pharynx), pita suara (vocal cord), rongga mulut (oral cavity), rongga hidung (nasal cavity), lidah (tongue), dan bibir (lips).
Pada sistem pengenalan suara oleh manusia terdapat tiga organ penting yang saling berhubungan yaitu : telinga yang berperan sebagai transduser dengan menerima sinyal masukan suara dan mengubahnya menjadi sinyal syaraf, jaringan syaraf yang berfungsi mentransmisikan sinyal ke otak, dan otak yang akan mengklasifikasi dan mengidentifikasi informasi yang terkandung dalam sinyal masukan.







BAB II
( ISI )
( BUNYI DAN PENDENGARAN PADA MANUSIA )
A. PROSES PRODUKSI SUARA MANUSIA

Proses produksi suara pada manusia dapat dibagi menjadi tiga buah proses fisiologis, yaitu : Pembentukan aliran udara dari paru-paru, Perubahan aliran udara dari paru-paru menjadi suara ( baik voiced maupun unvoiced yang dikenal dengan istilah phonation, dan artikulasi yaitu proses modulasi/pengaturan suara menjadi bunyi yang spesifik.
Organ tubuh yang terlibat pada proses produksi suara adalah : paru-paru, tenggorokan (trachea), laring (larynx), faring (pharynx), pita suara (vocal cord), rongga mulut (oral cavity), rongga hidung (nasal cavity), lidah (tongue), dan bibir (lips).
Organ tubuh ini dapat dikelompokkan menjadi tiga bagian utama, yaitu : vocal tract (berawal di awal bukaan pita suara atau glottis, dan berakhir di bibir), nasal tract (dari velum sampai nostril), dan source generator (terdiri dari paru-paru, tenggorokan, dan larynx). Ukuran vocal tract bervariasi untuk setiap individu, namun untuk laki-laki dewasa rata-rata panjangnya sekitar 17 cm. Luas dari vocal tract juga bervariasi antara 0 (ketika seluruhnya tertutup) hingga sekitar 20 cm2. Ketika velum, organ yang memiliki fungsi sebagai pintu penghubung antara vocal tract dengan nasal tract, terbuka, maka secara akustik nasal tract akan bergandengan dengan vocal tract untuk menghasilkan suara nasal.
Aliran udara yang dihasilkan dorongan otot paru-paru bersifat konstan. Ketika pita suara dalam keadaan berkontraksi, aliran udara yang lewat membuatnya bergetar. Aliran udara tersebut dipotong-potong oleh gerakan pita suara menjadi sinyal pulsa yang bersifat quasi-periodik. Sinyal pulsa tersebut kemudian mengalami modulasi frekuensi ketika melewati pharynx, rongga mulut ataupun pada rongga hidung. Sinyal suara yang dihasilkan pada proses ini dinamakan sinyal voiced. Namun, apabila pita suara dalam keadaan relaksasi, maka aliran udara akan berusaha melewati celah sempit pada permulaan vocal tract sehingga alirannya menjadi turbulen, proses ini akan menghasilkan sinyal unvoiced. Ketika sumber suara melalui vocal tract, kandungan frekuensinya mengalami modulasi sehingga terjadi resonansi pada vocal tract yang disebut formants. Apabila sinyal suara yang dihasilkan adalah sinyal voiced, terutama vokal, maka pada selang waktu yang singkat bentuk vocal tract relative konstan (berubah secara lambat) sehingga bentuk vocal tract dapat diperkirakan dari bentuk spektral sinyal voiced.
Aliran udara yang melewati pita suara dapat dibedakan menjadi phonation, bisikan, frication, kompresi, vibrasi ataupun kombinasi diantaranya. Phonated excitation terjadi bila aliran udara dimodulasi oleh pita suara. Whispered excitation dihasilkan oleh aliran udara yang bergerak cepat masuk ke dalam lorong bukaan segitiga kecil antara arytenoids cartilage di belakang pita suara yang hampir tertutup. Frication excitation dihasilkan oleh desakan di vocal tract. Compression excitation dihasilkan akibat pelepasan udara melalui vocal tract yang tertutup dengan tekanan tinggi. Vibration excitation disebabkan oleh udara yang dipaksa memasuki rusang selain pita suara, khususnya lidah. Suara yang dihasilkan oleh Phonated excitation disebut voiced. Suara yang dihasilkan oleh Phonated excitation ditambah frication disebut mixed voiced, sedangkan yang dihasilkan oleh selain itu disebut unvoiced. Karakteristik suara tiap individu bersifat unik karena terdapat perbedaan dalam hal panjang maupun bentuk vocal tract.
B. PENGENALAN SUARA PADA MANUSIA
Pada sistem pengenalan suara oleh manusia terdapat tiga organ penting yang saling berhubungan yaitu : telinga yang berperan sebagai transduser dengan menerima sinyal masukan suara dan mengubahnya menjadi sinyal syaraf, jaringan syaraf yang berfungsi mentransmisikan sinyal ke otak, dan otak yang akan mengklasifikasi dan mengidentifikasi informasi yang terkandung dalam sinyal masukan.
 Karakteristik Telinga
Telinga terbagi menjadi tiga bagian, yaitu bagian luar, tengah, dan dalam. Pinna, sebagai bagian luar telinga berfungsi sebagai corong, untuk mengumpulkan sinyal suara menuju auditory canal sehingga dapat memberikan kesan arah sinyal suara yang diterima.
Auditory canal adalah struktur berbentuk pipa lurus sepanjang 2,7 cm dengan diameter sekitar 0,7 cm yang pada bagian ujungnya terdapat selaput membrane yaitu gendang telinga. Membran ini merupakan pintu masuk telinga bagian tengah, yaitu ruangan berisi udara dengan volume sebesar 2 cm3, yang terdiri dari tiga buah tulang, yaitu malleus (martil), incus (landasan), dan stapes (sanggurdi). Bagian ini terhubung dengan tenggorokan melalui Eustachian tube. Getaran pada gendang telinga ditransmisikan ke malleus melalui incus, dan stapes, yaitu membentuk oval window.
Telinga bagian dalam (labyrinth) memiliki tiga bagian, yaitu vestibule (ruang pintu masuk), semicular canal, dan cochlea. Vestibule terhubung dengan telinga bagian tengah melalui dua jalur, yaitu oval window, dan round window. Keduanya tertutup untuk mencegah keluarnya cairan yang mengisi telinga telinga bagian dalam. Pada cochlea, yang berstruktur seperti rumah siput, terdapat syaraf pendengaran. Syaraf ini memanjang sampai ke basilar membrane. Pada bagian atas basilar membrane terdapat organ of corty yang memiliki empat baris sel rambut (sekitar 3 x 104 sel seluruhnya).
 Proses pendengaran
Proses pendengaran pada telinga manusia dijelaskan sebagai berikut :
1. Sinyal suara memasuki saluran telinga dan variasi tekanan yang dihasilkannya menekan gendang telinga. Karena sisi bagian dalam dari gendang telinga mempunyai tekanan yang nilainya dijaga konstan maka gendang telinga akan bergetar.
2. Getaran dari gendang telinga disalurkan pada tiga rangkaian tulang yaitu; martil, incus dan stapes. Mekanisme ini dirancang untuk mengkopel variasi suara dari udara luar ke telinga bagian dalam. Karena luas permukaan penampang yang ditekan stapes lebih kecil dari luas penampang gendang telinga maka tekanan suara yang sampai ke telinga bagaian dalam bertambah besar.
3. Cairan pada cochlea bergetar dengan frekuensi yang sama dengan gelombang yang datang. Basilar membrane kemudian memisahkan sinyal berdasarkan frekuensinya. Basilar membrane berstruktur kuat dan panjang di daerah sekitar oval window namun bersifat lentur pada bagian ujungnya. Frekuensi resonansi yang dihasilkan membrane tersebut berbeda sepanjang dimensi basilar membrane. Dimana resonansi frekuensi tinggi terjadi pada bagian bagian basilar membrane yang berada dekat dengan oval window, sedangkan resonansi frekuensi rendah terjadi pada daerah ujung lainnya. Syaraf yang berada pada mambran kemudian mendeteksi posisi terjadinya resonansi yang juga akan menentukan frekuensi suara yang datang. Ukuran dari basilar membrane rata-rata sekitar 35 mm. Dari ukuran panjang tersebut dapat dihasilkan 10 resolusi frekuensi, sehingga pada setiap 3.5 mm panjang membran terdapat 1 oktaf frekuensi resonansi.

 Sinyal Suara Ucapan
Sinyal suara ucapan manusia dapat dipandang sebagai sinyal yang berubah lambat terhadap waktu (slowly time varying signal), jika diamati pada selang waktu yang singkat yaitu 5-100 ms. Pada selang waktu tersebut, katakteristik sinyal suara ucapan dapat dianggap stasioner. Untuk selang waktu yang lebih panjang (dengan orde 0.2 detik atau lebih), karakteristik sinyal berubah untuk merefleksikan suara berbeda yang diucapkan.
 Klasifikasi berdasarkan sinyal eksitasi
Berdasarkan sinyal eksitasi yang dihasilkan pada proses produksi suara, sinyal suara ucapan dapat dibagi menjadi tiga bagian yaitu silence, unvoiced, dan voiced:
1. Sinyal silence : sinyal pada saat tidak terjadi proses produksi suara ucapan, dan sinyal yang diterima oleh pendengar dianggap sebagai bising latar belakang.
2. Sinyal unvoiced : terjadi pada saat pita suara tidak bergetar, dimana sinyal eksitasi berupa sinyal random.
3. Sinyal voiced : terjadi jika pita suara bergetar, yaitu pada saat sinyal eksitasi berupa sinyal pulsa kuasi-periodik. Selama terjadinya sinyal voiced ini, pita suara bergetar pada frekuensi fundamental – inilah yang dikenal sebagai pitch dari suara tersebut.
 Analisis Sinyal Ucapan
Informasi yang terdapat di dalam sebuah sinyal ucapan dapat dianalisis dengan berbagi cara. Beberapa peneliti telah membagi beberapa level pendekatan untuk menggambarkan informasi tersebut, yaitu level akustik, fonetik, fonologi, morfologi, sintatik, dan semantik.

1. Level Akustik
Sinyal ucapan merupakan variasi tekanan udara yang dihasilkan oleh sistem artikulasi. Untuk menganalisa aspek-aspek akustik dari sebuah sinyal ucapan, dapat dilakukan dengan transformasi dari bentuk sinyal ucapan menjadi sinyal listrik dengan menggunakan tranduser seperti microphone, telepon, dan sebagainya. Setelah melalui berbagai pengolahan sinyal digital, maka akan di peroleh informasi yang menunjukkan sifat-sifat akustik dari sinyal ucapan tersebut yang meliputi: frekuensi fundamental (F0), intensitas, dan distribusi energi spektral.
2. Level Fonetik
Level ini menggambarkan bagaimana suatu sinyal suara diproduksi oleh organ-organ di dalam tubuh manusia.
3. Level Fonologi
Di dalam level ini, dikenal istilah fonem yang merupakan unit terkecil yang membentuk sebuah kalimat atau ucapan. Deskripsi ini memuat informasi durasi, intensitas, dan pitch dari fonem-fonem yang membangun kalimat tersebut.
4. Level Morfologi
Susunan beberapa fonem akan menghasilkan kata. Morfologi menggambarkan berbagai bentukan kata yang terdiri atas awalan (prefiks), sisipan (infiks), dan akhiran (sufiks).
5. Level Sintatik
Aspek sintatik berfungsi untuk mengatur susunan kata agar membentuk kalimat yang benar.
6. Level Semantik
Sebuah kalimat bisa jadi tidak mengandung makna sama sekali sehingga seringkali harus dibuat aturan dasar dalam menyusun kalimat yang bisa menghasilkan makna tertentu. Tujuan dari aspek semantik ini adalah untuk meneliti makna kata tertentu di dalam kalimat dan kaitannya satu sama lain.
Pada penelitian ini untuk level morfologi, sintatik, dan semantik diabaikan karena penelitian ini hanya menekankan pada analisis karakter suara yang berkaitan dengan parameter-parameter fisis seperti frekuensi fundamental(F0), durasi fonem dan intensitas suara.
 Intonasi Sebagai Aspek Akustik Sinyal Ucapan
Intonasi (prosodi) sebagai aspek akustik sinyal suara sangat membantu di dalam mengidentifikasi setiap segmen akustik dengan fonem. Setiap fonem dihasilkan terutama oleh sistem vokal selama artikulasi yang selanjutnya mempengaruhi dinamika spektrum spektral suara (dalam hal ini formant). Pengucapan suatu kata dapat secara substansial bervariasi di dalam intonasinya mempengaruhi idetitas kata. Fonem dapat menjadi panjang atau pendek, keras atau lemah, dan memiliki pola pitch (nada) yang bervariasi.
Fenomena intonasi dapat direpresentasikan ke dalam beberapa level antara lain adalah sebagai berikut :
1. Level Akustik
Terdiri atas beberapa komponen penting yaitu Frekuensi Fundamental (F0), amplitudo, dan durasi sinyal.
2. Level Perseptual
Merepresentasikan fenomena intonasi sebagaimana yang didengar oleh pendengarnya. Beberapa komponennya antara lain pitch (nada), keras atau lemahnya suara, dan panjang atau pendeknya suara.
3. Level Bahasa (Linguistik)
Merepresentasikan fenomena prosodi ke dalam bentuk simbol atau tanda. Beberapa komponennya antara lain bunyi (tone), intonasi, dan aspek tekanan.
Menonjolkan suku kata yang mendapat tekanan terhadap suku kata yang lain yang tidak mendapat tekanan adalah fungsi utama sebuah intonasi (prosodi). Suku kata yang mendapat tekanan menjadi lebih panjang, lebih intens, dan memiliki pola F0 yang menyebabkan mereka lebih menonjol dibanding suku kata lainnya.
C. PARAMETER-PARAMETER YANG DIPERLUKAN DALAM PENGIDENTIFIKASIAN SUARA MANUSIA
 Pitch
Pitch digunakan sebagai standar tinggi-rendah dari sebuah tone (suara). Sinyal suara umumnya merupakan proses secara fisis yang terdiri dari dua bagian: yaitu sebagai hasil dari sumber suara (pita suara) dan sebagai hasil dari penyaringan (oleh lidah, bibir, dan gigi). menganalisa pitch berarti mencoba untuk menangkap frekuensi dasar sumber bunyi dari keseluruhan proses pengucapan suara. Frekuensi dasar sendiri merupakan frekuensi yang dominan yang dikeluarkan oleh sumber bunyi. Frekuensi dasar merupakan parameter paling kuat untuk mengetahui korelasi bagaimana suatu suara diterima oleh pendengar ditinjau dari segi intonasi dan tekanan suaranya.
 Formant
Frekuensi fundamental dikenal juga dengan F0 yang koheren dalam bentuk transisi formant F1, F2, dan sebagainya. Komponen frekuensi dominan yang mengkarakterisasi fonem-fonem yang berhubungan dengan komponen frekuensi resonansi dari sistem vokal didefinisikan sebagai formant. Suara yang terucapkan, secara khusus adalah vokal, biasanya memiliki 3 buah formant dan seringkali disebut sebagai formant kesatu, kedua, dan ketiga, dimulai dengan komponen frekuensi terendah. Ketiganya selalu dituliskan sebagai F1, F2, dan F3. formant 4 dan formant 5 dbutuhkan untuk mendapatkan nilai parameter formant yang lebih detail karena bila sinyal suara yang kita olah hanya memiliki formant yang kurang dari 3 buah, maka dapat dipastikan analisa terhadap data tersebut akan gagal.
 Durasi Fonem
Salah satu komponen terpenting di dalam intonasi adalah durasi sinyal. Setiap fonem yang memberikan kontribusi dalam menentukan pola intonasi suatu kalimat. Durasi fonem ini sangat dipengaruhi oleh tekanan dan kecepatan bicara. Durasi sebuah fonem vokal sangat dipengaruhi oleh tekanan, sementara durasi sebuah konsonan umumnya memiliki variasi tekanan yang lebih kecil.
Menurut Douglas O’Shugnessy(1.200) suatu ucapan dalam percakapan melibatkan 150-250 kata permenit, termasuk jeda yang masing-masing rata-rata sepanjang 6-50 ms. Durasi fonem bervariasi karena faktor seperti gaya bicara (membaca atau bercakap-cakap). Durasi suku kata umumnya sekitar 200ms dengan vokal yang mendapat tekanan sekitar 130 ms dan fonem lain sekitar 70ms. Durasi fonem bermacam-macam untuk fonem yang berbeda karakteristiknya.
 Durasi dan Kekerasan Suara
Bagaimana kekerasan suara dari sebuah suara yang bersifat impulsif menyamai kekerasan suara dari suara yang diberikan secara kontinyu pada tingkatan yang sama?. Beberapa eksperimen telah menetapkan bahwa telinga merata-ratakan energi suara sekitar lebih dari 200ms, maka kekerasan suara yang bersifat impulsif akan bertambah dengan durasi hingga mencapai nilai tersebut. Dengan kata lain, tingkat kekerasan suara akan bertambah 10 dB ketika durasi bertambah dengan faktor 10. Dari sini dapat diketahui bahwa berapa lamanya durasi yang dilakukan membantu dalam adaptasi pendengaran terhadap kekerasan suara, terutama untuk suara yang sifatnya impulsif atau muncul tidak kontinyu.
 Durasi dan Pitch
Lamanya durasi dapat mempengaruhi persepsi pitch. Kebergantungan pitch terhadap durasi mengikuti prinsip ketikpastian akustik! Berdasarkan pengamatan yang dilakukan Rossing dan Houtsma pada tahun 1986, ketika durasi pitch jatuh hingga di bawah 25 ms, pitch dirasakan berubah, walaupun batasan ini berbeda untuk beberapa pengamat.
 Durasi dan Timbre
Durasi dari sinyal suara membedakan panjang pendeknya sinyal suara dengan domain waktu. Dalam timbre musikal, lamanya durasi dapat membagi nada ke dalam dua jenis yaitu : nada kontinyu dan nada transien. Persepsi timbre dalam suatu permainan musik yang melibatkan banyak alat musik dipengaruhi oleh durasinya. Seorang pendengar yang diminta untuk menebak jenis alat musik akan menebak dengan benar untuk alat musik yang dimainkan dengan durasi yang lebih lama dibandingkan dengan alat musik yang dimainkan hanya sesaat (transien).
 Intensitas Suara
Intensitas bunyi menentukan keras lemahnya suara pada bagian tertentu dari suatu kalimat. Telinga kita sangat peka (sensitive) dan dapat mendeteksi intensitas-intensitas suara dalam orde 10-13 W/m2. Ini setara dengan gerakan selaput telinga sebesar 10-12 m. Intensitas suara minimum yang masih dapat didengar dinamakan ambang pendengaran (threshold of hearing). Intensitas suara biasanya dinyatakan dalam desibel di atas ambang pendengaran karena kekerasan suara (loudness) kira-kira adalah sebanding dengan logaritma dari intensitas. Pedoman nol desibel untuk intensitas suara sudah ditentukan standarnya yaitu pada 10-12W/m2 pada 1000 Hz (yaitu ambang pendengaran pada 1000Hz). [6]


 Spektogram
Spektogram suara melukiskan variasi-variasi dalam batas yang pendek yaitu variasi intensitas dan frekuensi dalam bentuk grafik. Variasi tersebut memberikan banyak informasi yang bermanfaat tentang artikulasi suara. Pola spektogram yang dihasilkan untuk setiap ucapan akan memiliki perbedaan. Bahkan ketika dua orang mengucapkan kata yang sama artikulasi mereka sama, namun tidak identik. Sehingga spektogram mereka akan menunjukkan kemiripan juga perbedaan.
 Metode Principal Component Analysis (PCA)
Principal Component Analysis (PCA) merupakan suatu metode reduksi variabel-variabel dalam suatu matrik. Data-data suara yang telah ditentukan nilai-nilai parameternya dibentuk menjadi sebuah matrik. Metode ini digunakan untuk mencari distribusi sinyal suara dan parameter fisis yang paling dominan pada sinyal suara tersebut.









DAFTAR PUSTAKA

AMP Pemantulan Cahaya

STANDAR KOMPETENSI
Menerapakan prinsip kerja alat – alat optic

KOMPETENSI DASAR
Menganalisis alat – alat optic secara kualitatif dan kuantitatif

INDIKATOR
• Menjelaskan pemantulan cahaya secara kualitatif dan kuatitatif
• Menjelaskan pemantulan cahaya pada cermin datar dan lengkung

TUJUAN
Peserta didik dapat:

1. Menjelaskan jenis pemantulan cahaya.
2. Menyebutkan hukum pemantulan cahaya.
3. Menjelaskan proses pemantulan pada cermin datar.
4. Menyebutkan sifat-sifat bayangan pada cermin datar.
5. Melukis pembentukan bayangan pada cermin datar.
6. Menghitung tinggi minimal cermin datar agar seluruh bayangan ada di
dalam cermin.
7. Menghitung jumlah bayangan pada dua cermin datar yang di gabung
berhadapan.
8. Menjelaskan proses pemantulan pada cermin cekung.
9. Menyebutkan sinar-sinar istimewa pada cermin cekung.
10. Melukis pembentukan bayangan pada cermin cekung.
11. Menjelaskan hubungan jarak focus dan jari-jari lengkung.
12. Menjelaskan proses perbesaran bayangan pada cermin cekung.
13. Menggunakan rumus umum pada cermin cekung.
14. Menjelaskan proses pemantulan pada cermin cembung.
15. Menyebutkan sinar-sinar istimewa pada cermin cembung.
16. Melukis pembentukan bayangan pada cermin cembung.
17. Menggunakan rumus pada cermin cembung

METODE
1. CERAMAH
2. DISKUSI
3. DEMONSTRASI

MEDIA
1. OHP.
2. PAPAN TULIS.
3. SENTER
4. CERMIN DATAR
5. CERMIN CEKUNG
6. CERMIN CEMBUNG

PEMANTULAN CAHAYA

Pemantulan ada dua, yaitu pemantulan baur dan pemantulan teratur. Apabila cahaya jatuh pada permukaan benda yang kasar, maka sinar dipantulkan ke berbagai arah. Karena dipantulkan pada berbagai arah, maka sinar pantul berpotongan setelah meninggalkan permukaan. Pemantulan seperti ini disebut pemantulan baur atau pemantulan difus. Pemantulan baur terjadi pada permukaan benda yang tidak rata dan kasar. Pemantulan teratur adalah pemantulan cahaya ke arah tertentu. Pemantulan teratur terjadi terjadi pada permukaan benda yang sangat halus atau rata.
A. Pemantulan Baur
Berbeda dengan benda yang memiliki permukaan rata, pada saat cahaya mengenai suatu permukaan yang tidak rata, maka sinar-sinar sejajar yang datang pada permukaan tersebut dipantulkan tidak sebagai sinar-sinar sejajar Gambar memperlihatkan bagaimana sinar-sinar yang datang ke permukaan kayu dipantulkan ke berbagai arah sehingga kita dapat melihat kayu ini pada posisi A, B dan C.Perhatikan bahwa sinar-sinar yang datang ke permukaan kayu merupakan sinar - sinar yang sejajar, namun sinar-sinar pantulnya tidak. Pemantulan seperti ini disebut pemantulan baur.


Gambar .
Pemantulan baur pada permukaan bidang yang tidak rata
Akibat pemantulan baur ini kita dapat melihat benda dari berbagai arah. Misalnya pada kain atau kertas yang disinari lampu sorot di dalam ruang gelap kita dapat melihat apa yang ada pada kain atau kertas tersebut dari berbagai arah. Pemantulan baur yang dilakukan oleh partikel-partikel debu di udara yang berperan dalam mengurangi kesilauan sinar matahari.





Gambar .Pemantulan cahaya lampu mobil di malam hari
(a) jalanan kering dan kasar (b) jalanan basah karena hujan.

Pemantulan baur juga sangat membantu pengemudi mobil saat malam hari yang gelap. Pada saat jalanan kering di malam yang gelap sinar lampu mobil akan dipantulkan ke segala arah oleh permukaan jalanan yang tidak rata ke segala arah termasuk ke mata pengemudi sehingga jalanan terlihat terang (Gambar.a). Namun saat jalanan basah karena hujan, permukaan jalanan menjadi rata sehingga sinar lampu mobil hanya dipantulkan ke arah tentu saja, yakni ke arah depan jalanan sehingga pengemudi mengalami kesulitan karena tidak dapat melihat jalanan di depannya dengan baik seperti diperlihatkan Gambar.b.

B. Pemantulan Biasa
Pada permukaan benda yang rata seperti cermin datar, cahaya dipantulkan membentuk suatu pola yang teratur. Sinar-sinar sejajar yang datang pada permukaan cermin dipantulkan sebagai sinar-sinar sejajar pula. Akibatnya cermin dapat membentuk bayangan benda. Pemantulan semacam ini disebut pemantulan teratur atau pemantulan biasa.



Gambar .
Pemantulan biasa pada cermin membentuk bayangan benda

C. Hukum Pemantulan Cahaya
Pada saat sinar mendatangi permukaan cermin datar, cahaya akan dipantulkan seperti pada Gambar di bawah. Garis yang tegak lurus bidang pantul disebut garis normal. Pengukuran sudut datang dan sudut pantul dimulai dari garis ini. Sudut datang (i) adalah sudut yang dibentuk oleh garis normal (1) dan sinar datang (2), sedangkan sudut pantul (r) adalah sudut yang dibentuk oleh garis normal (1) dan sinar pantul (3)



Gambar .
Pemantulan cahaya: Sudut datang sama dengan sudut pantul.
Berdasarkan pengamatan dan pengukuran didapatkan bahwa:
1. sinar datang, sinar pantul dan garis normal terletak pada bidang yang sama;
2. besar sudut datang (i) sama dengan besar sudut pantul (r).
Dua pernyataan di atas dikenal sebagai hukum pemantulan cahaya.
Contoh:
1. Pada gambar di bawah sudut manakah yang merupakan sudut datang datar dan yang manakah sudut pantul?


Penyelesaian:
Garis (2) pada gambar di atas melukiskan sinar datang ke permukaan cermin sedangkan garis (1) adalah garis normal. Sudut datang adalah sudut yang dibentuk oleh sinar datang dan garis normal. Jadi sudut datang adalah c, sedangkan sudut pantul dibentuk oleh garis normal (1) dan sinar pantul (3) dan besarnya sama dengan sudut datang. Pada gambar sudut pantul adalah b.












D. CERMIN DATAR
Cermin datar adalah cermin yang bentuk permukaannya datar. Pada Gambar diperlihatkan bagaimana bayangan sebuah lampu listrik terbentuk pada sebuah cermin datar. Untuk memudahkan pembahasan, hanya dua sinar yang diperlihatkan pada gambar tersebut.


Gambar . Pembentukan bayangan pada cermin datar.
Pada gambar di atas mata melihat lampu listrik berada di X, sebab sinar-sinar yang datang ke mata berasal dari X. Tentu saja ini tidak benar. Sinar-sinar yang bagi mata berasal dari X sebenarnya merupakan sinar-sinar yang dipancarkan oleh lampu listrik ke permukaan cermin datar di depannya. Oleh cermin datar sinar-sinar ini dipantulkan ke mata sehingga terkesan bagi mata seolah-olah sinar-sinar tersebut datang dari X. Jadi yang dilihat oleh mata adalah bayangan lampu listrik di X, bukan lampu listrik yang sebenarnya. Bayangan seperti ini disebut bayangan maya. Bayangan maya dapat dilihat oleh mata, namun tidak dapat ditangkap layar. Kebalikan dari bayangan maya adalah bayangan nyata atau bayangan sejati.

Sifat Bayangan pada Cermin Datar
Bayangan yang terbentuk pada cermin datar bersifat maya atau semu. Dikatakan bayangan maya karena bayangan tersebut dibentuk oleh garis yang telah diperpanjang. Apabila bayangan yang dibentuk oleh garis yang tidak diperpanjang maka bayangan yang dihasilkan disebut bayangan nyata.
Ketika kita berdiri di depan cermin datar, maka tampak bayangan dalam cermin tetap tegak, kepala tetap di atas dan kaki tetap di bawah. Akan tetapi, posisi tangan kanan di cermin ada di sebelah kiri, sedangkan tangan kiri ada di sebelah kanan pada bayangan di cermin. Dengan demikian, sifat bayangan yang dihasilkan cermin datar adalah : jarak bayangan sama dengan jarak benda, ukuran bayangan sama dengan ukuran benda, bayangan tegak, bayangan menghadap terbalik, dan bayangan maya ( semu ).
Cermin datar dimanfaatkan untuk berhias. Selain itu juga cermin datar dimanfaatkan sebagai kaca spion pada mobil dan digunakan juga pada periskop. Sifat-sifat bayangan pada cermin datar antara lain :
• Maya
• Tegak
• Simetris (bentuk dan tinggi bayangan sama dengan benda)
• Berkebalikan sisi (sisi kanan benda menjadi sisi kiri bayangan)
• Jarak benda kecermin sama dengan jarak bayangan kecermin)

Melukis Pembentukan Bayangan pada Cermin Datar

Untuk melukis bayangan pada cermin datar sangat mudah. Gunakan saja hokum pemantulan cahaya. Misalkan saja Anda hendak menentukan bayangan benda O sebagaimana terlihat pada Gambar di bawah. Misalkan sinar datang dari O ke C, lalu dari titik C ditarik garis normal tegak lurus permukaan cermin. Dengan bantuan busur derajat, ukurlah besar sudut dating (i) yakni sudut yang dibentuk oleh OC dan garis normal. Selanjutnya buatlah sudut pantul (r) yaitu sudut antara garis normal dan sinar pantul CD yang besarnya sama dengan sudut datang. Posisi bayangan dapat ditentukan dengan memperpanjang sinar pantul CD dari C ke O’ yang berpotongan dengan garis OO’ melalui B.


Gambar .Melukis pembentukan bayangan benda O menggunakan hukum
pemantulan cahaya.
Bila Anda ukur akan Anda dapatkan bahwa jarak BO = BO’. Dengan bantuan geometri dapat juga Anda buktikan kebenaran ini. Pada Gambar 8 sudut BOC = sudut dating (berseberangan) dan sudut BO’C = sudut pantul (sehadap). Karena sudut datang = sudut pantul, maka Anda dapatkan sudut BOC = sudut BO’C. Sementara itu sudut CBO = CBO’ (sama-sama tegak lurus) sehingga dapat disimpulkan bahwa segitiga CBO sama dan sebangun dengan segitiga CBO’. Akibatnya panjang BO = BO’. Dalam hal ini BO = jarak benda BO’ = jarak bayangan. Pada cermin datar selalu didapatkan bahwa jarak benda sama dengan jarak bayangan. Mudah, bukan?



Gambar. Melukis bayangan sebuah pensil menggunakan hukum pemantulan
cahaya.

Bayangan sebuah pensil di depan cermin datar pada gambar 10 dapat ditentukan dengan menggunakan hukum pemantulan cahaya. Cara melukisnya sama seperti melukis benda O pada gambar 9. Hanya saja untuk benda yang memiliki tinggi seperti pensil ini Anda harus melukis jalannya sinar datang dan sinar pantul minimal untuk dua titik yakni A dan B. Dengan pembuktian yang serupa dengan gambar 9 Anda akan dapatkan bahwa AF = A’F dan tinggi AB = A’B’. Jadi pada cermin datar tidak hanya jarak benda sama dengan jarak bayangan tetapi juga bahwa tinggi benda sama dengan tinggi bayangan. Untuk benda yang bukan berupa titik atau garis, ukuran bayangan sama dengan ukuran bendanya. Benda dan bayangan hanya berbeda dalam 2 arahnya. Bagian kiri benda menjadi bagian kanan bayangan dan sebaliknya.

Berapakah tinggi minimal cermin datar agar saat bercermin seluruh bayangan
tubuh kita ada di dalam cermin tersebut?
Bila seorang anak yang tingginya 150 cm ingin melihat bayangannya pada cermin datar, haruskah cermin itu mempunyai tinggi yang sama dengan anak itu? Marilah kita jawab pertanyaan ini secara geometrik. Kita ambil misal tinggi anak dari ujung kaki sampai atas kepala = h. Untuk melihat atas kepala, maka sinar harus datang dari kepala menuju cermin lalu cermin memantulkan sinar itu ke mata. Untuk melihat ujung kaki, sinar harus datang dari ujung kaki ke cermin lalu oleh cermin dipantulkan ke mata. Pada Gambar 10 jarak atas kepala (topi) ke mata = d.


Gambar .Menentukan tinggi minimal cermin untuk melihat tinggi seluruh
bayangan benda.

Dari gambar terlihat bahwa tinggi minimal cermin datar L = s + ½ d, sedangkan h = 2s + d atau s = 1/2 (h – d) sehingga kita dapatkan tinggi minimal cermin
L = ½ (h – d) + ½ d
atau:
Persamaan untuk menentukan tinggi minimal L cermin
datar agar dapat melihat tinggi seluruh bayangan benda (jarak mata dan ujung atas kepala diabaikan)


dengan:
L = tinggi minimal cermin datar (m)
h = tinggi benda (m)

Jadi, agar dapat melihat tinggi seluruh bayangan benda pada sebuah cermin datar maka tinggi cermin itu haruslah sama dengan setengah tinggi benda dengan posisi seperti diperlihatkan oleh gambar di atas.

Berapakah jumlah bayangan yang dibentuk oleh dua buah cermin datar yang digabung berhadapan?
Dua buah cermin datar yang digabung dengan cara tertentu dapat memperbanyak jumlah bayangan sebuah benda. Jumlah bayangan yang terjadi bergantung pad abesar sudut yang dibentuk oleh kedua cermin itu. Namun, sebelum kita bahas hal ini cobalah Anda perhatikan gambar di bawah ini terlebih dahulu.

Gambar .Agar sinar datang selalu sejajar dengan sinar keluar, maka besar sudut harus 90°.

Pada gambar sinar datang dan sinar keluar tampak sejajar. Untuk mendapatkan hasil seperti ini, besar yaitu sudut yang dibentuk oleh cermin A dan cermin B harus berharga tertentu. Besar sudut ini dapat ditentukan dengan bantuan geometri sebagai berikut.
Berdasarkan gambar sudut yang dibentuk oleh cermin A dan cermin B, yaitu = 1 + 2 yang besarnya sama dengan 180° – (90° - r1) – (900 – i2) sehingga dapat ditulis,
= r1 + i2
karena besar r1 = i1 (ingat hukum pemantulan pada cermin datar), maka
= i1 + i2
Andaikan pada Gambar adalah sudut antara sinar datang dan sinar keluar yang besarnya,
= 1 + 2 + 3 + 4
atau
= (90° – r1) + (90° – i2) + (90° – i1) + (90° – r2)
karena r1 = i1 dan r2 = i2, maka
= (90° – r1) + (90° – i2) + (90° – i1) + (90° – r2)
atau
= 2(90° – i1) + 2(90° – i2)
= (180° – 2i1) + (180° – 2i2)
= 360° – 2(i1 + i2)
agar sinar yang mendatangi cermin datar (sinar datang) sejajar dengan sinar yang keluar dari cermin datar (sinar keluar)l, maka = 180° sehingga 180° = 360° – 2(i1 + i2) atau 180° = 2(i1 + i2) akhirnya (i1 + i2) = 90°
Jadi, pada sistem dua cermin datar yang digabung berhadapan agar sinar datang sejajar dengan sinar keluar , maka besar = 90°.

Jadi mulai sekarang ingatlah selalu bahwa sudut perputaran sinar pantul sama dengan 2 kali perputaran cermin datar. Tentu saja ini hanya berlaku bila arah sinar dating tidak diubah. Kini, saatnya kita menghitung bayangan yang dapat dibentuk oleh gabungan dua cermin datar. Gambar memperlihatkan dua cermin datar yang digabung berhadapan membentuk sudut 90° satu dengan lainnya. Sebuah sumber cahaya P (misalnya lampu listrik) berada di antara dua cermin.

Gambar. Dua cermin yang digabung membentuk sudut 90° menghasilkan 3 bayangan.

Sesuai dengan hukum pemantulan cahaya pada cermin datar sebagamana telah diuraikan sebelumnya, bayangan benda P pada cermin A adalah A’ dan pada cermin B adalah B’. Bayangan A’ berada di depan cermin B sehingga tercipta bayangan B’’ di belakang cermin B.
Hal yang sama terjadi pada B’ yang berada di depan cermin A sehingga terbentuk bayangan A’’ di belakang cermin A dan ternyata A’’ berhimpit dengan B’’. Karena keduanya berada di belakang cermin, maka tidak ada lagi bayangan yang terbentuk. Jadi, gabungan dua cermin datar seperti ini hanya menghasilkan 3 buah bayangan.
Bagaimana kalau sudut antara dua cermin itu 60°?
Perhatikan gambar. Untuk membedakan bayangan benda oleh cermin A diberi notasi A1, A2 dan seterusnya, sedangkan bayangan yang dibentuk oleh cermin B diberi notasi B1, B2 dan seterusnya.

Gambar . Dua cermin yang digabung berhadapan membentuk sudut 60° menghasilkan 5 bayangan benda.

Bayangan yang dibentuk oleh cermin A yang pertama adalah A1, sedangkan bayangan yang dibentuk oleh cermin B yang pertama adalah B1. Karena A1 ada di depan cermin B, maka terbentuklah bayangan B2 oleh cermin B. Sebaliknya karena B1 ada dihadapan cermin A, maka terbentuklah bayangan A2.
Selanjutnya, karena B2 ada di depan cermin A, maka terbentuklah bayangan A3. Bersamaan dengan hal itu karena A2 berada di hadapan cermin B, maka terbentuklah bayangan B3 yang ternyata berhimpit dengan A3. Sampai di sini tidak ada lagi bayangan yang dapat dibentuk oleh kedua cermin datar A dan B sehingga dapat disimpulkan bahwa bila sudut antara kedua cermin datar 60° dihasilkan sebanyak 5 bayangan yaitu A1, A2 , B1 , B2 dan A3 atau B3.
Bila berpusat di C yang merupakan titik perpotongan cermin datar A dan B dibuat sebuah lingkaran dengan jari-jari CP, maka tampak bahwa lingkaran tersebut melewati semua posisi-posisi atau titik-titik bayangan yang dibentuk oleh cermin A dan B seperti tampak pada Gambar 14. Berdasarkan hal ini, maka melukis bayangan yang dibentuk oleh dua cermin yang digabung berhadapan dengan sudut tertentu, akan menjadi lebih mudah bila terlebih dahulu dibuat sebuah lingkaran dengan pusat (poros) di titik perpotongan kedua cermin datar tersebut.

Adakah persamaan yang dapat digunakan untuk menentukan jumlah bayangan yang dibentuk oleh dua cermin datar yang digabung berhadapan?
Bila sudut antara dua cermin datar 90° menghasilkan 3 bayangan dari suatu benda yang diletakkan di antara kedua cermin tersebut dan sudut 60° menghasilkan 5 bayangan, berapakah jumlah bayangan yang dibentuk bila sudut antara dua cermin 30° , 22,5° , 15° dan seterusnya?
Secara empirik artinya berdasarkan hasil-hasil percobaan menggunakan dua cermin datar yang digabung berhadapan seperti dicontohkan di atas dengan berbagai variasi sudut antara dua cermin datar itu, didapatlah sebuah persamaan yang disebut persamaan jumlah bayangan seperti tertulis di bawah ini.

Persamaan jumlah bayangan gabungan dua cermin yang berhadapan
dengan
n = jumlah bayangan
= sudut antara dua cermin datar yang digabung berhadapan
m = 1 jika hasilnya bilangan genap
m = 0 jika hasilnya bilangan ganjil
Coba Anda terapkan persamaan ini untuk = 90°, = 60° dan = 45°, sesuaikah dengan hasil lukisan bayangan di atas?
Gabungan dua cermin datar dapat Anda jumpai misalnya di toko sepatu atau toko pakaian dan digunakan oleh para pelanggan toko tersebut saat mencoba sepatu atau pakaian yang hendak mereka beli. Gabungan dua cermin ini dapat juga anda temui di salon-salon kecantikan.


E. CERMIN LENGKUNG
Cermin lengkung adalah cermin yang permukaannya lengkung seperti permukaan bola. Cemin ini dibedakan atas cermin cekung (konkaf) dan cermin cembung (konveks). Pada gambar 14 tampak sinar datang pada cermin cekung berhadapan dengan permukaan pantul yang bentuknya seperti permukaan dalam bola, sedangkan pada cermin cembung sinar datang berhadapan dengan permukaan pantul yang merupakan permukaan luar bola.

Gambar : Cermin lengkung permukaan bola: (a) cermin cekung dan (b) cermin cembung.

Beberapa istilah yang Anda harus pahami saat membicarakan cermin lengkung antara lain adalah pusat kelengkungan, verteks, sumbu utama, jari-jari kelengkungan, focus utama, jarak fokus dan bidang fokus. pa yang disebut pusat kelengkungan di sini adalah pusat kelengkungan cermin (C), verteks adalah titik tengah permukaan pantul (O), sumbu utama adalah garis lurus yang menghubungkan antara pusat kelengkungan dan verteks (CO), jari-jari kelengkungan R merupakan jari-jari bola cermin, fokus utama (F) merupakan sebuah titik pada sumbu utama tempat berkumpulnya sinar-sinar sejajar yang mendatangi cermin cekung, jarak fokus (f) adalah jarak dari verteks ke fokus utama F, dan bidang fokus adalah bidang yang melalui fokus dan tegak lurus sumbu utama.
Perhatikan gambar di bawah, baik pada cermin cekung maupun cermin cembung sinar datang ke cermin dari arah kiri.


Gambar
Penamaan dan penempatan titik dan jarak pada
(a) cermin cekung dan (b) cermin cembung.

Hubungan antara jarak fokus f dan jari-jari kelengkungan R dapat dijelaskan dengan bantuan gambar di bawah. Sinar-sinar sejajar sumbu utama yang menuju ke cermin tampak dipantulkan cermin melalui titik api (fokus). Pemantulan sinar ini tetap mengikuti hukum pemantulan cahaya seperti yang sudah kita bicarakan. Jadi sudut datang sama dengan sudut pantul i = r. Perlu diingat bahwa sudut-sudut ini diukur terhadap garis normal yang pada setiap sudut datang (i) atau sudut pantul selalu menuju titik pusat kelengkungan C.


Gambar : Sinar-sinar paraksial sejajar sumbu utama dipantulkan oleh cermin menuju titik api F (fokus).(Sinar-sinar parasial atau dekat sumbu utama)
\ Pembentukan Bayangan Oleh Cermin Cekung
Seperti telah dikatakan berulang-ulang, pembentukan bayangan oleh cermin cekung mematuhi hukum-hukum pemantulan cahaya. Untuk dapat melukis bayangan yang dibentuk oleh cermin cekung biasanya digunakan tiga sinar istimewa. Sinar istimewa adalah sinar datang yang lintasannya mudah diramalkan tanpa harus mengukur sudut datang dan sudut pantulnya.
Anda sudah mempelajari 3 sinar istimewa ini saat di SMP, namun sekedar mengingatkan kembali tiga sinar istimewa itu adalah,
a. Sinar yang melalui pusat kelengkungan cermin akan dipantulkan melalui pusat kelengkungan itu lagi.


Gambar . Sinar yang melewati titik pusat kelengkungan akan dipantulkan cermin cekung melewati titik tersebut.
b. Sinar yang sejajar sumbu utama akan dipantulkan melalui fokus utama.

c. Gambar . Sinar yang sejajar sumbu utama akan dipantulkan melalui fokus utama.
Sinar yang melalui fokus utama akan dipantulkan sejajar sumbu utama.

Model Tetesan Cair

BAB I
PENDAHULUAN
1.1 Sifat utama (kecuali massa) dari atom, molekul dan zat padat semuanya dapat dirunut dari kelakuan elektron atom, bukan pada kelakuan intinya. Akan tetapi inti sendiri tidak bisa dipandang kurang penting dalam skema besar dari benda. Misalnya keberadaan berbagai unsur timbul karena kemampuan inti untuk memiliki muatan listrik multi rangkap, dan informasi tentang kemampuan ini merupakan persoalan sentral dalam fisika. Lebih lanjut lagi, energi yang memberi kekuatan untuk berlangsungnya evolusi semesta yang berkesinambungan semuanya dapat dirunut pada reaksi nuklir dan transformasi nuklir. Dan juga, energi nuklir mempunyai penerapan penting pada pemakaian di bumi.
1.2 Sejarah Fisika Inti
o Tahun 1896, lahirnya fisika inti dimana Becquerel menemukan radioaktivitas dalam uranium.
o Rutherford menunjukkan tiga tipe radiasi, yaitu alfa (Inti He), beta (electron) dan gama (foton berenergi tinggi).
o Tahun 1911, Rutherford, Geiger dan Marsden melakukan eksperimen hamburan dan memperoleh informasi tentang muatan inti serta gaya nuklir yang merupakan gaya jenis baru.
o Tahun 1919, Rutherford dan coworkers mengamati reaksi inti pertama kali
o Tahun 1932, Cockcroft dan Walton pertama kali menggunakan pemercepat proton untuk menghasilkan reaksi inti.
o Tahun 1932, Chadwick menemukan neutron.
o Tahun 1933, Curies menemukan radioaktif buatan.
o Tahun 1938, Hahn adan Strassman menemukan fisi nuklir.
o Tahun 1942, Fermi membuat reaktor fisi inti yang pertama yang dapat dikontrol.



1.3 Inti Atom
Model atom yang paling sukses selama ini adalah model atom Bohr. Asumsi yang digunakan Bohr dalam model atom hidrogennya adalah:
1. Elektron bergerak mengelilingi inti dibawah pengaruh gaya Coulomb.
2. Hanya orbit elektron tertentu yang stabil (energi elektron tetap).
3. Radisi diemisikan oleh atom ketika elektron berpindah dari keadaan yang energinya lebih tinggi ke keadaan yang energinya lebih rendah.
Inti atom bermuatan positif yang terdiri atas proton, tetapi apakah hanya ada proton dalam Inti? Berikut dijelaskan penemuan neutron dalam inti. Pada tahun 1930, W Bothe dan Becker menembaki berilium dengan partikel alfa, ternyata ada pancaran radiasi netral yang bisa memukul keluar proton dengan energi 5.7 MeV. Identifikasi pertama kali tentang radiasi netral tersebut












BAB II
PEMBAHASAN
MODEL TETESAN CAIRAN
Model tetes cairan, yang mengkaji sifat-sifat makroskopik dari sebuah inti, yang meliputi: Energetik setiap nukleon, energi ikat inti, ukuran dan bentuk inti serta distribusi nukleon. Model ini mengasumsikan bahwa setiap nukleon bersifat sama (hanya berbeda muatan saja).
Struktur atom ditemukan oleh Rutherford, ahli fisika inggris,pada tahun 1911. Tetapi struktur atom Rutherfrod (struktur atom menurut pengamatan rutherfrod) kurang jelas. MenurutRutherfrod atom terdiri dari inti yang dikelilingi planet. Tapi Rutherfrod tidak dapat menjelaskan berapa jauh jarak elektron dari inti. Bohr memperbaiki model atom Rutherfod.
Dalam membahas sifat-sifat nukleus terdapat tiga model inti yang dianggap sebagai dasar dalam membahas sifat-sifat nukleus tersebut. Model-model inti tersebut antara lain Model tetes cairan, Model kulit inti, Model kolektif inti. Ketiga model inti tersebut akan diuraikan sebagai berikut. (Retug, 2005)

Gambar. stuktur model tetesan cairan
Model tetes cairan dikembangkan oleh Niels Bohr, Wheeler, dan Frenkel. Model ini memperlakukan inti sebagai suatu massa homogen dan setiap nukleon berinteraksi secara kuat dengan tetangga terdekatnya (Bunbun Bunjali, 2002). Nukleon-nukleon penyusun nucleus saling tarik-menarik sehingga jarak antar nucleon menjadi sangat rapat. Gaya interaksi adalah gaya jarak pendek yang bersifat jenuh dan tidak tergantung pada muatan dan spin nukleon, sehingga energi interaksi antarnukleon merupakan fungsi kontinu dari massa inti ( nomor massa A). Nukleon-nukleon yang ada di permukaan nukleus mendapatkan gaya tarikan yang lebih kuat kearah dalam nucleus cenderung menjadi bulat seperti setetes cairan. (Retug, 2005)
C. V. Wieszacker pada tahun 1935 mendapati bahwa sifat-sifat inti berhubungan dengan ukuran, masa dan energi ikat. Hal ini mirip dengan yang dijumpai pada tetes cairan. Kerapatan cairan adalah konstan, ukurannya sebanding dengan jumlah partikel atau molekul di dalam cairan, dan penguapannya (energi ikatnya) berbanding lurus dengan massa atau jumlah partikel yang membentuk tetesan. Selain itu, model tetes cairan memberikan dasar perhitungan energi pengikat inti dan massa atom secara inti empirik yang dapat diaplikasikan dalam menghitung tetapan jari-jari nuklir dan memperkirakan nuklida stabil pada deret isobarik peluruhan.


Gambar 2 model tetesan cairan
Model ini disebut model tetes cairan karena adanya sejumlah kesamaan kelakuan antara inti dan tetesan suatu cairan. Kesamaan kelakuan tersebut adalah:
(1). Baik tetes cairan maupun inti, keduanya bersifat homogen dan tidak dapat dimamfatkan. Tetes cairan tersusun oleh sejumlah atom atau molekul , sedangkan inti tersusun atas nukleon . Implikasi dari hal ini adalah volume inti sebanding dengan massa A. Maka jari-jari inti R = r0 A , dengan r0 suatu tetapan dengan orde 1,2 – 1,5 F.
(2). Kemiripan inti dengan tetesan larutan ideal ditunjukkan dengan anggapan bahwa gaya interaksi antarnukleon adalah sama, tidak memperhatikan muatan maupun spin nukleon, yakni f n-n f n-p f p-p
Hal ini didukung oleh fakta bahwa energi pengikat inti pada pasangan “ inti cermin” adalah hampir sama, yaitu penggantian gaya p-p oleh gaya n-n tidak memberikan pengaruh yang berarti terhadap energi pengikat total
(3). Analog dengan suatu tetes cairan, inti atom akan menunjukkan adanya gaya tegangan permukaan, gaya yang sebanding dengan luas permukaan inti, sehingga terdapat gaya sebanding dengan A .
(4) Gambaran umum untuk tetes cairan, yaitu dapat terjadi penggabungan tetesan kecil menjadi tetesan yang lebih besar atau sebaliknya, pemecahan tetesan besar menjadi tetesan yang lebih kecil. Hal ini ada kemiripan dengan reaksi fusi dan fissi pada reaksi inti.
(5). Jika tetes cairan atau inti ditembaki dengan partikel berenergi tinggi, partikel penembak ditangkap dan terbentuk suatu inti gabungan (inti majemuk). Kemudian tambahkan eneri partikel yang tertangkap akan secara cepat didistriusika kepada semua partikel dalam tetesan atau nukleon-nukleon dalam inti. Proses termalisasi energi ini dalam inti gabunga dapat berlangsung dalam waktu 10 – 10 detik, berantung pada kecepatan partikel penembak.
(6). Pelepasan kelebihan energi (dieksitasi) pada tetesan atau inti majemuk dapat dilakukan melalui proses berikut :

Pada Tetesan Pada Inti Majemuk
• Pendinginan dengan melepaskan panas
• Penguapan sejumlah partikel
• Pemecahan tetesan menjadi dua tetesan yang lebih kecil • Pendinginan dengan memancarkan radiasi
• Pemancaran satu atau lebih partikel
• Pembelahan inti menjadi dua inti yang lebih kecil
Nukleon-nukleon yang berbeda jenis setelah membentuk nukleus menjadi satu-kesatuan, dan tidak lagi sebagai nukleon yang berdiri-sendiri. Bila nukleus menerima suatu aksi dari luar maka seluruh nukleon penyusun nukleus memberikan aksi secara bersama-sama.
Dalam keadaan tereksitasi sifat dari nukleus menjadi tidak stabil. Untuk mencapai kestabilan kembali nukleus akan melakukan reaksi nuklir. Hasil dari reaksi nuklir dapat berwujud energi panas, radiasi partikel dan gelombang elektromagnet. Terpancarnya partikel-partikel dari nukleon dapat dianalogkan dengan teruapkannya melekul-molekul air dari tetes cairan.
Model tetes cairan juga mampu menjelaskan mekanismelogis dari reaksi inti berenergi rendah, menjelaskan gejala pembelahan dan penggabungan inti. Selain itu, model tetes cairan memberikan dasar perhitungan energi pengikat inti dan massa atom secara inti empirik yang dikemukakan Weizsacker yang dapat diaplikasikan dalam menghitung tetapan jari-jari nuklir dan memperkirakan nuklida stabil pada deret isobarik peluruhan.
Pembenaran untuk model tetes cairan:
Asumsi dasar dari model tetes cairan adalah bahwa inti bermuatan, tetesan cairan non polar dipertahankan oleh gaya inti. Dalam kasus sederhana analogi kimiawi misalkan tetesan molekul non polar CCl4 atau isopentana yang dipertahankan oleh gaya Vander Waal. Untuk sistem tersebut berlaku sifat-sifat sebagai berikut:
• Gaya tarik yang dirasakan pada jarak yang sangat kecil, misalnya, pada sebuah bidang batas yang relatif tajam pada permukaan, hal ini sesuai dengan keadaan keseragaman kerapatan bola atau distribusi nukleon Wood-Saxon.
• Gaya pada keadaan jenuh, misalnya, semua nukleon berada dalam bentuk cairan terikat sama kuat, tidak bergantung pada radius.
• Inti yang tak termampatkan berada pada keadaan dasar memiliki distribusi kerapatan yang seragam dan memiliki rata-rata energi ikat yang sama.
• Tegangan permukaan terbentuk karena hilangnya ikatan antar nukleon di permukaan inti, efek ini menimbulkan bentuk bulat untuk meminimalkan energi permukaan.
Perbedaan signifikan antara tetes cairan klasik dan inti haruslah diperhitungkan dalam model ini. Misalnya:
• Inti hanya memiliki jumlah partikel yang sangat kecil (<270) jika dibandingkan dengan keadaan kimiawi (~1023). Hasilnya adalah perbandingan yang terlalu besar antara jumlah nukleon yang berada pada permukaan tetes inti dan permukaan tetes kimiawi.
• Nukleon terdiri dari dua komponen yaitu netron dan proton.
• Proton bermuatan positif, interaksi antar proton akan mengurangi gaya ikat inti karena muatan yang sejenis akan saling tolak-menolak sesuai dengan hukum Coulomb. Sebuah analog dengan keadaan kimiawi dari klaster Xe dan ion Xe+ yang saling terikat oleh gaya yang lebih kuat dari gaya Vander Waal.
• Keadaan mikroskopik seperti pada struktur kulit tidak berlaku utuk model ini.

Model tetes cairan menuntun kita pada formula massa semi empirik (ketergantungan massa nukleus pada A dan Z).
Eb= a1A- a2A 2/3- a3Z2A-1/3- a4(A-2Z )2 A-1± a5 A-3/4


Konstanta diperoleh secara eksperimen:
a1 = 14 MeV a4 = 19,3 MeV
a2= 13 MeV a5= 33,5 MeV
a3= 0.69 MeV

Konstanta b5 ditentukan dengan skema berikut:



Rata-rata energi ikat per nukleon dapat dihitung sebagai berikut:

Kerapatan setetes cairan tidak bergantung pada ukurannya. Dengan begitu, jika tetes itu menyerupai bola, maka radiusnya sebanding dengan akar 3 jumlah molekulnya.
Hal serupa ditemui pada inti, bahwa radius inti (inti dianggap menyerupai bola) sebanding dengan A^1/3, sehingga kerapatannya tidak bergantung pada ukuranya.Energi ikat tiap molekul sama, sehingga energi yang diperlukan untuk memisahkan semua molekul cairan itu sebanding dengan jumlah molekulnya. Pada inti diketahui hal serupa, bahwa energi ikat rata-rata per nukleon (fraksi ikat) konstan, yang berarti, energi yang diperlukan untuk memisahkan semua nukleon sebanding dengan jumlah nukleon.

Gambar. grafik model tetesan air
Pada energi ikat tetes cairan tersebut di atas, dikenakan koreksi efek permukaan, dikarenakan molekul cairan di permukaan kurang terikat dibanding molekul di dalam tetes cairan. Untuk energi ikat inti berlaku juga koreksi efek permukaan serupa.
Menurut model tetes cairan, inti berperilaku seperti layaknya setetes cairan. Model ini termasuk model collective (model collective yang pertama)

PENUTUP
KESIMPULAN
Model tetes cairan dikembangkan oleh Niels Bohr, Wheeler, dan Frenkel. Model ini memperlakukan inti sebagai suatu massa homogen dan setiap nukleon berinteraksi secara kuat dengan tetangga terdekatnya (Bunbun Bunjali, 2002). Nukleon-nukleon penyusun nucleus saling tarik-menarik sehingga jarak antar nucleon menjadi sangat rapat. Gaya interaksi adalah gaya jarak pendek yang bersifat jenuh dan tidak tergantung pada muatan dan spin nukleon, sehingga energi interaksi antarnukleon merupakan fungsi kontinu dari massa inti ( nomor massa A). Nukleon-nukleon yang ada di permukaan nukleus mendapatkan gaya tarikan yang lebih kuat kearah dalam nucleus cenderung menjadi bulat seperti setetes cairan. (Retug, 2005)
Model ini disebut model tetes cairan karena adanya sejumlah kesamaan kelakuan antara inti dan tetesan suatu cairan. Kesamaan kelakuan tersebut adalah:
(1).Baik tetes cairan maupun inti, keduanya bersifat homogen dan tidak dapat dimamfatkan. Tetes cairan tersusun oleh sejumlah atom atau molekul , sedangkan inti tersusun atas nukleon . Implikasi dari hal ini adalah volume inti sebanding dengan massa A. Maka jari-jari inti R = r0 A , dengan r0 suatu tetapan dengan orde 1,2 – 1,5 F.
(2). Kemiripan inti dengan tetesan larutan ideal ditunjukkan dengan anggapan bahwa gaya interaksi antarnukleon adalah sama, tidak memperhatikan muatan maupun spin nukleon, yakni f n-n f n-p f p-p
Hal ini didukung oleh fakta bahwa energi pengikat inti pada pasangan “ inti cermin” adalah hampir sama, yaitu penggantian gaya p-p oleh gaya n-n tidak memberikan pengaruh yang berarti terhadap energi pengikat total
(3). Analog dengan suatu tetes cairan, inti atom akan menunjukkan adanya gaya tegangan permukaan, gaya yang sebanding dengan luas permukaan inti, sehingga terdapat gaya sebanding dengan A .
(4) Gambaran umum untuk tetes cairan, yaitu dapat terjadi penggabungan tetesan kecil menjadi tetesan yang lebih besar atau sebaliknya, pemecahan tetesan besar menjadi tetesan yang lebih kecil. Hal ini ada kemiripan dengan reaksi fusi dan
fissi pada reaksi inti.
(5). Jika tetes cairan atau inti ditembaki dengan partikel berenergi tinggi, partikel penembak ditangkap dan terbentuk suatu inti gabungan (inti majemuk). Kemudian tambahkan eneri partikel yang tertangkap akan secara cepat didistriusika kepada semua partikel dalam tetesan atau nukleon-nukleon dalam inti. Proses termalisasi energi ini dalam inti gabunga dapat berlangsung dalam waktu 10- 10 detik, berantung pada kecepatan partikel penembak.
(6). Pelepasan kelebihan energi (dieksitasi) pada tetesan atau inti majemuk dapat dilakukan melalui proses berikut :
Pada Tetesan
* Pendinginan dengan melepaskan panas
* Penguapan sejumlah partikel
* Pemecahan tetesan menjadi dua tetesan yang lebih kecil
Pada Inti Majemuk:
* Pendinginan dengan memancarkan radiasi
* Pemancaran satu atau lebih partikel
* Pembelahan inti menjadi dua inti yang lebih kecil
Nukleon-nukleon yang berbeda jenis setelah membentuk nukleus menjadi satu-kesatuan, dan tidak lagi sebagai nukleon yang berdiri-sendiri. Bila nukleus menerima suatu aksi dari luar maka seluruh nukleon penyusun nukleus memberikan aksi secara bersama-sama.
Dalam keadaan tereksitasi sifat dari nukleus menjadi tidak stabil. Untuk mencapai kestabilan kembali nukleus akan melakukan reaksi nuklir. Hasil dari reaksi nuklir dapat berwujud energi panas, radiasi partikel dan gelombang elektromagnet. Terpancarnya partikel-partikel dari nukleon dapat dianalogkan dengan teruapkannya melekul-molekul air dari tetes cairan.
Model tetes cairan juga mampu menjelaskan mekanismelogis dari reaksi inti berenergi rendah, menjelaskan gejala pembelahan dan penggabungan inti. Selain itu, model tetes cairan memberikan dasar perhitungan energi pengikat inti dan massa atom secara inti empirik yang dikemukakan Weizsacker yang dapat diaplikasikan dalam menghitung tetapan jari-jari nuklir dan memperkirakan nuklida stabil pada deret isobarik peluruhan .

DAFTAR PUSTAKA

 www.community.undip.ac.id.2010...model-tetesan-cairan
 www.scribd.com/doc/40055520/model-inti-3